GEO/TCGA数据是否需要标准化的问题

一.对于芯片数据:

GEO中的Series Matrix File(s)通常是经过了标准化和对数转换的数据,但是不是所有的都是

具体判断方法:

表达量是否需要重新标准化:

可以通过boxplot函数观察一下样本表达丰度值的分布是否整齐进行判断

是否需要log2:根据数据值的大小:

如果表达丰度的数值在50以内,通常是经过log2转化的。如果数字在几百几千,则是未经转化的。

注意:是否需要log是根据后续需要什么处理,不同处理对输入数据要求的不同形式来规定的,具体可以查看相关分析包的输入数据要求,比如
image.png

芯片数据标准化:

image.png

image.png

转自此文:https://blog.csdn.net/weixin_43700050/article/details/99703975

二.对于测序数据

Counts值

对给定的基因组参考区域,计算比对上的read数,又称为raw count(RC)

aw count作为原始的read计数矩阵是一个绝对值,而绝对值的特点是基因长度、测序深度不同不可以比较。所以我们要进行标准化把count矩阵转变为相对值,去除基因长度、测序深度的影响,我们采用分析的

标准化的三种方法得出的三种值

RPM (Reads per million mapped reads):RPM方法:10^6标准化了测序深度的影响,但没有考虑转录本的长度的影响。

RPKM/FPKM方法:103标准化了基因长度的影响,106标准化了测序深度的影响。TCGA的数据分析多采用这种结果

TPM (Transcript per million):TPM的计算方法也同RPKM/FPKM类似,TPM可以看作是RPKM/FPKM值的百分比。TPM实际上改进了RPKM/FPKM方法在跨样品间定量的不准确性。TPM的使用范围与RPKM/FPKM相同。

不同的值在GEO.TCGA中怎么分辨

GEO中需要注意给出的是什么值,临床信息中一般有处理方法记录
TCGA一般会几种标准化之后的值都会给你,你选其中这一种分析,目前多用FPKM值,多还在此基础上log过

具体还可参考生信技能树老师此文
RNA-seq的counts值,RPM, RPKM, FPKM, TPM 的异同:https://cloud.tencent.com/developer/article/1484078

最后

感谢jimmy的生信技能树团队!

感谢导师岑洪老师!

感谢健明、孙小洁等生信技能树团队的老师一路以来的指导和鼓励!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345