UX Planet论坛上有过这么一篇热门文章: Infinite Scrolling Best Practices,它从UX角度分析了无限滚动加载的设计实践。
无限滚动加载在互联网上到处都有应用:
豆瓣首页是一个,Facebook的Timeline是一个,Tweeter的话题列表也是一个。当你向下滚动,新的内容就神奇的“无中生有”了。这是一个得到广泛赞扬的用户体验。
无限滚动加载背后的技术挑战其实比想象中要多不少。尤其是要考虑页面性能,需要做到极致。
本文通过代码实例,来实现一个无限滚动加载效果。更重要的是,在实现过程中,对于页面性能的分析和处理力图做到最大化,希望对读者有所启发,同时也欢迎与我讨论。
性能测量
在开启我们的代码之前,有必要先了解一下常用的性能测量手段:
1)使用window.performance
HTML5带来的performance API功能强大。我们可以使用其performance.now()精确计算程序执行时间。performance.now()与Date.now()不同的是,返回了以微秒(百万分之一秒)为单位的时间,更加精准。并且与 Date.now() 会受系统程序执行阻塞的影响不同,performance.now() 的时间是以恒定速率递增的,不受系统时间的影响(系统时间可被人为或软件调整)。
同时,也可以使用performance.mark()标记各种时间戳(就像在地图上打点),保存为各种测量值(测量地图上的点之间的距离),便可以批量地分析这些数据了。
2)使用console.time方法与console.timeEnd方法
其中console.time方法用于标记开始时间,console.timeEnd方法用于标记结束时间,并且将结束时间与开始时间之间经过的毫秒数在控制台中输出。
3)使用专业的测量工具/平台:jsPerf
这次实现中,我们使用第二种方法,因为它已经完全可以满足我们的需求,且兼容性更加全面。
整体思路和方案设计
我们要实现的页面样例如图,
它能够做到无限下拉加载内容。我把红线标出的部分叫做一个block-item,后续也都用这种命名。
1)关于设计方案,肯定第一个最基本、最朴素的思想是下拉到底部之后发送ajax异步请求,成功之后的回调里进行页面拼接。
2)但是观察页面布局,很明显图片较多,每一个block-item区块都有一张配图。当加载后的内容插入到页面中时,浏览器就开始获取图片。这意味着所有的图像同时下载,浏览器中的下载通道将被占满。同时,由于内容优先于用户浏览而加载,所以可能被迫下载底部那些永远也不会被用户浏览到的图像。
所以,我们需要设计一个懒加载效果,使得页面速度更快,并且节省用户的流量费用和延长电池寿命。
3)上一条提到的懒加载实现上,为了避免到真正的页面底部时才进行加载和渲染,而造成用户较长时间等待。我们可以设置一个合理阈值,在用户滚动到页面底部之前,先进行提前加载。
4)另外,页面滚动的事件肯定是需要监听的。同时,页面滚动问题也比较棘手,后面将专为滚动进行分析。
5)DOM操作我们知道是及其缓慢而低效的,有兴趣的同学可以研究一下jsPerf上一些经典的benchmark,比如这篇。关于造成这种缓慢的原因,社区上同样有很多文章有过分析,这里就不再深入。但我想总结并补充的是:DOM操作,光是为了找一个节点,就从本质上比简单的检索内存中的值要慢。一些DOM操作还需要重新计算样式来读取或检索一个值。更突出的问题在于:DOM操作是阻塞的,所以当有一个DOM操作在进行时,其他的什么都不能做,包括用户与页面的交互(除了滚动)。这是一个极度伤害用户体验的事实。
所以,在下面的效果实现中,我采用了大量“不可思议”的DOM缓存,甚至极端的缓存everything。当然,这样做的收益也在最后部分有所展现。
滚动问题
滚动问题不难想象在于高频率的触发滚动事件处理上。具我亲测,在极端case下,滚动及其卡顿。即使滚动不卡顿,你可以打开Chrome控制台发现,帧速率也非常慢。关于帧速率的问题,我们有著名的16.7毫秒理论。关于这个时间分析,社区上也有不少文章阐述,这里不再展开。
针对于此,有很多读者会立刻想到“截流和防抖动函数”(Throttle和Debounce)。
简单总结一下:
1)Throttle允许我们限制激活响应的数量。我们可以限制每秒回调的数量。反过来,也就是说在激活下一个回调之前要等待多少时间;
2)Debounce意味着当事件发生时,我们不会立即激活回调。相反,我们等待一定的时间并检查相同的事件是否再次触发。如果是,我们重置定时器,并再次等待。如果在等待期间没有发生相同的事件,我们就立即激活回调。
具体这里就不代码实现了。原理明白之后,应该不难写出。
但是我这里想从移动端主要浏览器处理滚动的方式入手,来思考这个问题:
1)在Android机器上,用户滚动屏幕时,滚动事件高频率发生——在Galaxy-SIII手机上,大约频率是一秒一百次。这意味着,滚动处理函数也被调用了数百次,而这些又都是成本较大的函数。
2)在Safari浏览器上,我们遇到的问题恰恰是相反的:用户每次滚动屏幕时,滚动事件只在滚动动画停止时才触发。当用户在iPhone上滚动屏幕时,不会运行更新界面的代码(滚动停止时才会运行一次)。
另外,我想也许会有读者想到rAf(requestAnimationFrame),但是据我观察,很多前端其实并不明白requestAnimationFrame技术的原理和解决的问题。只是机械地把动画性能、掉帧问题甩到这么一个名词上。在真实项目中,也没有亲自实现过,更不要说考虑requestAnimationFrame的兼容性情况了。这里场景我并不会使用rAf,因为。setTimeout的定时器值推荐最小使用16.7ms(原因请去社区上找答案,不再细讲),我们这里并不会超过这个限制,并且考虑兼容性。关于这项技术的使用,如果有问题,欢迎留言讨论。
基于以上,我的解决方案是既不同于Throttle,也不同于Debounce,但是和这两个思想,尤其是Throttle又比较类似:把滚动事件替换为一个带有计时器的滚动处理程序,每100毫秒进行简单检查,看这段时间内用户是否滚动过。如果没有,则什么都不做;如果有,就进行处理。
用户体验优化小窍门
在图像加载完成时,使用淡入(fade in)效果出现。这在实际情况上会稍微慢一下,应该慢一个过渡执行时间。但用户体验上感觉会更快。这是已经被证实且普遍应用的小“trick”。但是据我感觉,它确实有效。我们的代码实现也采用了这个小窍门。不过类似这种“社会心理学”范畴的东西,显然不是本文研究的重点。
总结一下
代码上将会采用:超前阈值的懒加载+DOM Cache和图片Cache+滚动throttle模拟+CSS fadeIn动画。
具体功能封装上和一些实现层面的东西,请您继续阅读。
代码实现
DOM结构
整体结构如下:
<div class="exp-list-box" id="expListBox">
<ul class="exp-list" id="expList">
</ul>
<div class="ui-refresh-down"></div>
</div>
主体内容放在id为“expListBox”的container里面,id为“expList”的ul是页面加载内容的容器。
因为每次加载并append进入HTML的内容相对较多。我使用了模版来取代传统的字符串拼接。前端模版这次选用了我的同事颜海镜大神的开源作品,模版结构为:
<#dataList.forEach(function (v) {#>
<div id="s-<#=v.eid#>" class="slide">
<li>
<a href="<#=v.href#>">
<img class="img" src="%2F%2F%2FwAAACwAAAAAAQABAEACAkQBADs%3D"
data-src="<#=v.src#>">
</img>
<strong><#=v.title#></strong>
<span class="writer"><#=v.writer#></span>
<span class="good-num"><#=v.succNum#></span>
</a>
</li>
</div>
<#})#>
以上模版内容由每次ajax请求到的数据填充,并添加进入页面,构成每个block-item。
这里需要注意观察,有助于对后面逻辑的理解。页面中一个block-item下div属性存有该block-item的eid值,对应class叫做"slide",子孙节点包含有一个image标签,src初始赋值为1px的空白图进行占位。真实图片资源位置存储在"data-src"中。
另外,请求返回的数据dataList可以理解为由9个对象构成的数组,也就是说,每次请求加载9个block-item。
样式亮点
样式方面不是这篇文章的重点,挑选最核心的一行来说明一下:
.slide .img{
display: inline-block;
width: 90px;
height: 90px;
margin: 0 auto;
opacity: 0;
-webkit-transition: opacity 0.25s ease-in-out;
-moz-transition: opacity 0.25s ease-in-out;
-o-transition: opacity 0.25s ease-in-out;
transition: opacity 0.25s ease-in-out;
}
唯一需要注意的是image的opacity设置为0,图片将会在成功请求并渲染后调整为1,辅助transition属性实现一个fade in效果。
对应我们上面所提到的那个“trick”
逻辑部分
我是完全按照业务需求来设计,并没有做抽象。其实这样的一个下拉加载功能完全可以抽象出来。有兴趣的读者可以下去自己进行封装和抽象。
我们先把精力集中在逻辑处理上。
下面进入我们最核心的逻辑部分,为了防止全局污染,我把它放入了一个立即执行函数中:
(function() {
var fetching = false;
var page = 1;
var slideCache = [];
var itemMap = {};
var lastScrollY = window.pageYOffset;
var scrollY = window.pageYOffset;
var innerHeight;
var topViewPort;
var bottomViewPort;
function isVisible (id) {
// ...判断元素是否在可见区域
}
function updateItemCache (node) {
// ....更新DOM缓存
}
function fetchContent () {
// ...ajax请求数据
}
function handleDefer () {
// ...懒加载实现
}
function handleScroll (e, force) {
// ...滚动处理程序
}
window.setTimeout(handleScroll, 100);
fetchContent();
}());
我认为好的编程习惯是在程序开头部分便声明所有的变量,防止“变量提升”带来的潜在困扰,并且也有利于程序的整体把控。
我们来看一下变量设置:
// 加载中状态锁
1)var fetching = false;
// 用于加载时发送请求参数,表示第几屏内容,初始为1,以后每请求一次,递增1
2)var page = 1;
// 只缓存最新一次下拉数据生成的DOM节点,即需要插入的dom缓存数组
3)var slideCache = [];
// 用于已经生成的DOM节点储存,存有item的offsetTop,offsetHeight
4) var slideMap = {};
// pageYOffset设置或返回当前页面相对于窗口显示区左上角的Y位置。
5)var lastScrollY = window.pageYOffset; var scrollY = window.pageYOffset;
// 浏览器窗口的视口(viewport)高度
6)var innerHeight;
// isVisible的上下阈值边界
7) var topViewPort;
8) var bottomViewPort;
关于DOM cache的变量详细说明,在后文有提供。
同样,我们有5个函数。在上面的代码中,注释已经写明白了每个方法的具体作用。接下来,我们逐个分析。
滚动处理程序handleScroll
它接受两个变量,第二个是一个布尔值force,表示是否强制触发滚动程序执行。
核心思路是:如果时间间隔100毫秒内,没有发生滚动,且并未强制触发,则do nothing,间隔100毫秒之后再次查询,然后直接return。
其中,是否发生滚动由lastScrollY === window.scrollY来判断。
在100毫秒之内发生滚动或者强制触发时,需要判断是否滚动已接近页面底部。如果是,则拉取数据,调用fetchContent方法,并调用懒加载方法handleDefer。
并且在这个处理程序中,我们计算出来了isVisible区域的上下阈值。我们使用600作为浮动区间,这么做的目的是在一定范围内提前加载图片,节省用户等待时间。当然,如果我们进行抽象时,可以把这个值进行参数化。
function handleScroll (e, force) {
// 如果时间间隔内,没有发生滚动,且并未强制触发加载,则do nothing,再次间隔100毫秒之后查询
if (!force && lastScrollY === window.scrollY) {
window.setTimeout(handleScroll, 100);
return;
}
else {
// 更新文档滚动位置
lastScrollY = window.scrollY;
}
scrollY = window.scrollY;
// 浏览器窗口的视口(viewport)高度赋值
innerHeight = window.innerHeight;
// 计算isVisible上下阈值
topViewPort = scrollY - 1000;
bottomViewPort = scrollY + innerHeight + 600;
// 判断是否需要加载
// document.body.offsetHeight;返回当前网页高度
if (window.scrollY + innerHeight + 200 > document.body.offsetHeight) {
fetchContent();
}
// 实现懒加载
handleDefer();
window.setTimeout(handleScroll, 100);
}
拉取数据
这里我用到了自己封装的ajax接口方法,它基于zepto的ajax方法,只不过又手动采用了promise包装一层。实现比较简单,当然有兴趣可以找我要一下代码,这里不再详细说了。
我们使用前端模版进行HTML渲染,同时调用updateItemCache,将此次数据拉取生成的DOM节点缓存。之后手动触发handleScroll,更新文档滚动位置和懒加载处理。
function fetchContent () {
// 设置加载状态锁
if (fetching) {
return;
}
else {
fetching = true;
}
ajax({
url: (!location.pathname.indexOf('/m/') ? '/m' : '')
+ '/list/asyn?page=' + page + (+new Date),
timeout: 300000,
dataType: 'json'
}).then(function (data) {
if (data.errno) {
return;
}
console.time('render');
var dataList = data.data.list;
var len = dataList.length;
var ulContainer = document.getElementById('expList');
var str = '';
var frag = document.createElement('div');
var tpl = __inline('content.tmpl');
for (var i = 0; i < len; i++) {
str = tpl({dataList: dataList});
}
frag.innerHTML = str;
ulContainer.appendChild(frag);
// 更新缓存
updateItemCache(frag);
// 已经拉去完毕,设置标识为true
fetching = false;
// 强制触发
handleScroll(null, true);
page++;
console.timeEnd('render');
}, function (xhr, type) {
console.log('Refresh:Ajax Error!');
});
}
缓存对象
之前参数里提到过,一共有两个用于缓存的对象/数组:
1)slideCache:缓存最近一次加载过的数据生成的DOM内容,缓存方式为数组储存:
slideCache = [
{
id: "s-97r45",
img: img DOM节点,
node: 父容器DOM node,类似<div id="s-<#=v.eid#>" class="slide"></div>,
src: 图片资源地址
},
...
]
slideCache由updateItemCache函数更新,主要用于懒加载时的赋值src。这样我们做到“只写入DOM”原则,不需要再从DOM读取。
2)slideMap:缓存DOM节点的高度和offsetTop,以DOM节点的id为索引。存储方式:
slideMap = {
s-97r45: {
node: DOM node,类似<div id="s-<#=v.eid#>" class="slide"></div>,
offTop: 300,
offsetHeight: 90
}
}
slideMap根据isVisible方法的参数进行更新和读取。使得我们在判断是否isVisible时,大量减少读取DOM的操作。
懒加载程序
在上面的滚动处理程序中,我们调用了handleDefer函数。我们看一下这个函数的实现:
function handleDefer () {
// 时间记录
console.time('defer');
// 获取dom缓存
var list = slideCache;
// 对于遍历list里的每一项,都使用一个变量,而不是在循环内部声明。节省内存,把性能高效,做到极致。
var thisImg;
for (var i = 0, len = list.length; i < len; i++) {
thisImg = list[i].img; // 这里我们都是从内存中读取,而不用读取DOM节点
var deferSrc = list[i].src; // 这里我们都是从内存中读取,而不用读取DOM节点
// 判断元素是否可见
if (isVisible(list[i].id)) {
// 这个函数是图片onload逻辑
var handler = function () {
var node = thisImg;
var src = deferSrc;
// 创建一个闭包
return function () {
node.src = src;
node.style.opacity = 1;
}
}
var img = new Image();
img.onload = handler();
img.src = list[i].src;
}
}
console.timeEnd('defer');
}
主要思路就是对DOM缓存中的每一项进行循环遍历。在循环中,判断每一项是否已经进入isVisible区域。如果进入isVisible区域,则对当前项进行真实src赋值,并设置opacity为1。
更新拉取数据生成的DOM缓存
针对每一个slide类,我们缓存对应DOM节、id、子元素img DOM节点:
function updateItemCache (node) {
var list = node.querySelectorAll('.slide');
var len = list.length;
slideCache = [];
var obj;
for (var i=0; i < len; i++) {
obj = {
node: list[i],
id: list[i].getAttribute('id'),
img: list[i].querySelector('.img')
}
obj.src = obj.img.getAttribute('data-src');
slideCache.push(obj);
};
}
是否在isVisible区域判断
该函数接受相应DOM id,并进行判断。
如果判断条件晦涩难懂的话,你一定要手动画画图理解一下。如果你就是懒得画图,那么也没关系,我帮你画好了,只是丑一些。。。
function isVisible (id) {
var offTop;
var offsetHeight;
var data;
var node;
// 判断此元素是否已经懒加载正确渲染,分为在屏幕之上(已经懒加载完毕)和屏幕外,已经添加到dom中,但是还未请求图片(懒加载之前)
if (itemMap[id]) {
// 直接获取offTop,offsetHeight值
offTop = itemMap[id].offTop;
offsetHeight = itemMap[id].offsetHeight;
}
else {
// 设置该节点,并且设置节点属性:node,offTop,offsetHeight
node = document.getElementById(id);
// offsetHeight是自身元素的高度
offsetHeight = parseInt(node.offsetHeight);
// 元素的上外缘距离最近采用定位父元素内壁的距离
offTop = parseInt(node.offsetTop);
}
if (offTop + offsetHeight > topViewPort && offTop < bottomViewPort) {
return true;
}
else {
return false;
}
}
性能收益
如上代码,我们主要进行了两方面的性能考量:
1)延迟加载时间
2)渲染DOM时间
整体收益如下:
优化前延迟平均值:49.2ms 中间值:43ms;
优化后延迟平均值:17.1ms 中间值:11ms;
优化前渲染平均值:2129.6ms 中间值:2153.5ms;
优化后渲染平均值:120.5ms 中间值:86ms;
继续思考
做完这些,其实也远远没有达到所谓的“极致化”性能体验。我们无非就做了各种DOM缓存、映射、懒加载。如果继续分析edge case,我们还能做的更多,比如:DOM回收、墓碑和滚动锚定。这些其实很多都是借鉴客户端开发理念,但是超前的谷歌开发者团队也都有了自己的实现。比如在去年7月份的
一篇文章:Complexities of an Infinite Scroller就都有所提及。这里从原理(非代码)层面,也给大家做个介绍。
DOM回收
它的原理是,对于需要产生的大量DOM节点(比如我们下拉加载的信息内容)不是主动用createElement的方式创建,而是回收利用那些已经移出视窗,暂时不会被需要的DOM节点。如图:
虽然DOM节点本身并非耗能大户,但是也不是一点都不消耗性能,每一个节点都会增加一些额外的内存、布局、样式和绘制。同样需要注意的一点是,在一个较大的DOM中每一次重新布局或重新应用样式(在节点上增加或删除样式所触发的过程)的系统开销都会比较昂贵。所以进行DOM回收意味着我们会保持DOM节点在一个比较低的数量上,进而加快上面提到的这些处理过程。
据我观察,在真正产品线上使用这项技术的还比较少。可能是因为实现复杂度和收益比并不很高。但是,淘宝移动端检索页面实现了类似的思想。如下图,
每加载一次数据,就生成“.page-container .J-PageContainer_页数”的div,在滚动多屏之后,早已移除视窗的div的子节点进行了remove(),并且为了保证滚动条的正确比例和防止高度塌陷,显示声明了2956px的高度。
墓碑(Tombstones)
如之前所说,如果网络延迟较大,用户又飞快地滚动,很容易就把我们渲染的DOM节点都甩在千里之外。这样就会出现极差的用户体验。针对这种情况,我们就需要一个墓碑条目占位在对应位置。等到数据取到之后,再代替墓碑。墓碑也可以有一个独立的DOM元素池。并且也可以设计出一些漂亮的过渡。这种技术在国外的一些“引领技术潮流”的网站上,早已经有了应有。比如下图取自Facebook:
我在“简书”APP客户端上,也见过类似的方案。当然,人家是native...
滚动锚定
滚动锚定的触发时机有两个:一个是墓碑被替换时,另一个是窗口大小发生改变时(在设备发生翻转时也会发生)。这两种情况,都需要调整对应的滚动位置。
总结
当你想提供一个高性能的有良好用户体验的功能时,可能技术上一个简单的问题,就会演变成复杂问题的。这篇文章便是一个例证。
随着 “Progressive Web Apps” 逐渐成为移动设备的一等公民(会吗?),高性能的良好体验会变得越来越重要。
开发者也必须持续的研究使用一些模式来应对性能约束。这些设计的基础当然都是成熟的技术为根本。
这篇文章参考了Flicker工程师,前YAHOO工程师Stephen Woods的《Building Touch Interfaces with HTML5》一书。以及王芃前辈对于《Complexities of an Infinite Scroller》一文的部分翻译。