高并发情况下如何保证分布式唯一全局Id生成-转载


前言                                                                                             

系统唯一ID是我们在设计一个系统的时候常常会遇见的问题,也常常为这个问题而纠结。

这篇文章就是给各位看官提供一个生成分布式唯一全局id生成方案的思路,希望能帮助到大家。

不足之处,请多多指教!!

问题

为什么需要分布式全局唯一ID以及分布式ID的业务需求

在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识,如在美团点评的金融、支付、餐饮、酒店、猫眼电影等产品的系统中数据逐渐增长,对数据库分库分表后需要有一个唯一ID来标识一条数据或信息;

特别Ian的订单、骑手、优惠券都需要有唯一ID做标识

此时一个能够生成全局唯一ID的系统是非常必要的

ID生成规则部分硬性要求

全局唯一

趋势递增

在MySQL的InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用Btree的数据结构来存储索引,在主键的选择上面我们应该尽量使用有序的主键保证写入性能

单调递增

保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求

信息安全

如果ID是连续,恶意用户的爬取工作就非常容易做了,直接按照顺序下载指定URL即可,如果是订单号就危险了,竞争对手可以直接知道我们一天的单量,所以在一些应用场景下,需要ID无规则不规则,让竞争对手不好猜

含时间戳

一样能够快速在开发中了解这个分布式ID什么时候生成的

ID号生成系统的可用性要求

高可用

发布一个获取分布式ID请求,服务器就要保证99.999%的情况下给我创建一个唯一分布式ID

低延迟

发一个获取分布式ID的请求,服务器就要快,极速

高QPS

例如并发一口气10万个创建分布式ID请求同时杀过来,服务器要顶得住且一下子成功创建10万个分布式ID

一般通用解决方案

UUID

UUID.randomUUID(), UUID的标准型包含32个16进制数字,以连字号分为五段,形式为 8-4-4-4-12的36个字符,性能非常高,本地生成,没有网络消耗。

存在问题

入数据库性能差,因为UUID是无序的

无序,无法预测他的生成顺序,不能生成递增有序的数字

首先分布式id一般都会作为逐渐,但是按照mysql官方推荐主键尽量越短越好,UUID每一个都很长,所以不是很推荐。另外,搜索公众号编程技术圈后台回复“物联网”,获取一份惊喜礼包。

主键,ID作为主键时,在特定的环境下会存在一些问题

比如做DB主键的场景下,UUID就非常不适用MySQL官方有明确的说明

索引,B+树索引的分裂

既然分布式ID是主键,然后主键是包含索引的,而mysql的索引是通过B+树来实现的,每一次新的UUID数据的插入,为了查询的优化,都会对索引底层的B+树进行修改,因为UUID数据是无序的,所以每一次UUID数据的插入都会对主键的B+树进行很大的修改,这一点很不好,插入完全无序,不但会导致一些中间节点产生分裂,也会白白创造出很多不饱和的节点,这样大大降低了数据库插入的性能。

UUID只能保证全局唯一性,不满足后面的趋势递增,单调递增

数据库自增主键

单机

在分布式里面,数据库的自增ID机制的主要原理是:数据库自增ID和mysql数据库的replace into实现的,这里的replace into跟insert功能 类似,不同点在于:replace into首先尝试插入数据列表中,如果发现表中已经有此行数据(根据主键或唯一索引判断)则先删除,在插入,否则直接插入新数据。

REPLACE INTO的含义是插入一条记录,如果表中唯一索引的值遇到冲突,则替换老数据

REPLACE into t_test(stub) values('b');

select LAST_INSERT_ID();

我们每次插入的时候,发现都会把原来的数据给替换,并且ID也会增加

这就满足了

递增性

单调性

唯一性

在分布式情况下,并且并发量不多的情况,可以使用这种方案来解决,获得一个全局的唯一ID

集群分布式集群

那数据库自增ID机制适合做分布式ID吗?答案是不太适合

系统水平扩展比较困难,比如定义好步长和机器台数之后,如果要添加机器该怎么办,假设现在有一台机器发号是:1,2,3,4,5,(步长是1),这个时候需要扩容机器一台,可以这样做:把第二胎机器的初始值设置得比第一台超过很多,貌似还好,但是假设线上如果有100台机器,这个时候扩容要怎么做,简直是噩梦,所以系统水平扩展方案复杂难以实现。

数据库压力还是很大,每次获取ID都得读写一次数据库,非常影响性能,不符合分布式ID里面的延迟低和高QPS的规则(在高并发下,如果都去数据库里面获取ID,那是非常影响性能的)

基于Redis生成全局ID策略

单机版

因为Redis是单线程,天生保证原子性,可以使用原子操作INCR和INCRBY来实现

INCRBY:设置增长步长

集群分布式

注意:在Redis集群情况下,同样和MySQL一样需要设置不同的增长步长,同时key一定要设置有效期,可以使用Redis集群来获取更高的吞吐量。

假设一个集群中有5台Redis,可以初始化每台Redis的值分别是 1,2,3,4,5 , 然后设置步长都是5

各个Redis生成的ID为:

A:1 6 11 16 21

B:2 7 12 17 22

C:3 8 13 18 23

D:4 9 14 19 24

E:5 10 15 20 25

但是存在的问题是,就是Redis集群的维护和保养比较麻烦,配置麻烦。因为要设置单点故障,哨兵值守

但是主要是的问题就是,为了一个ID,却需要引入整个Redis集群,有种杀鸡焉用牛刀的感觉。

雪花算法


是什么

Twitter的分布式自增ID算法,Snowflake

最初Twitter把存储系统从MySQL迁移到Cassandra(由Facebook开发一套开源分布式NoSQL数据库系统)因为Cassandra没有顺序ID生成机制,所有开发了这样一套全局唯一ID生成服务。

Twitter的分布式雪花算法SnowFlake,经测试SnowFlake每秒可以产生26万个自增可排序的ID

twitter的SnowFlake生成ID能够按照时间有序生成

SnowFlake算法生成ID的结果是一个64Bit大小的整数,为一个Long型(转换成字符串后长度最多19)

分布式系统内不会产生ID碰撞(由datacenter 和 workerID做区分)并且效率较高

分布式系统中,有一些需要全局唯一ID的场景,生成ID的基本要求

在分布式环境下,必须全局唯一性

一般都需要单调递增,因为一般唯一ID都会存在数据库,而InnoDB的特性就是将内容存储在主键索引上的叶子节点,而且是从左往右递增的,所有考虑到数据库性能,一般生成ID也最好是单调递增的。为了防止ID冲突可以使用36位UUID,但是UUID有一些缺点,首先是它相对比较长,并且另外UUID一般是无序的

可能还会需要无规则,因为如果使用唯一ID作为订单号这种,为了不让别人知道一天的订单量多少,就需要这种规则。扩展:接私活儿

结构

雪花算法的几个核心组成部分

在Java中64bit的证书是long类型,所以在SnowFlake算法生成的ID就是long类存储的

第一部分

二进制中最高位是符号位,1表示负数,0表示正数。生成的ID一般都是用整数,所以最高位固定为0。

第二部分

第二部分是41bit时间戳位,用来记录时间戳,毫秒级

41位可以表示 2^41 -1 个数字

如果只用来表示正整数,可以表示的范围是:0 - 2^41 -1,减1是因为可以表示的数值范围是从0开始计算的,而不是从1。

也就是说41位可以表示 2^41 - 1 毫秒的值,转换成单位年则是 69.73年

第三部分

第三部分为工作机器ID,10Bit用来记录工作机器ID

可以部署在2^10 = 1024个节点,包括5位 datacenterId(数据中心,机房) 和 5位 workerID(机器码)

5位可以表示的最大正整数是 2 ^ 5 = 31个数字,来表示不同的数据中心 和 机器码

第四部分

12位bit可以用来表示的正整数是 2^12 = 4095,即可以用0 1 2 … 4094 来表示同一个机器同一个时间戳内产生的4095个ID序号。

SnowFlake可以保证

所有生成的ID按时间趋势递增

整个分布式系统内不会产生重复ID,因为有datacenterId 和 workerId来做区分

实现

雪花算法是由scala算法编写的,有人使用java实现,github地址:

https://github.com/beyondfengyu/SnowFlake/blob/master/SnowFlake.java

/**

* twitter的snowflake算法 -- java实现

*

* @author beyond

*/

public class SnowFlake {

    /**

    * 起始的时间戳

    */

    private final static long START_STMP = 1480166465631L;

    /**

    * 每一部分占用的位数

    */

    private final static long SEQUENCE_BIT = 12; //序列号占用的位数

    private final static long MACHINE_BIT = 5;  //机器标识占用的位数

    private final static long DATACENTER_BIT = 5;//数据中心占用的位数

    /**

    * 每一部分的最大值

    */

    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);

    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);

    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /**

    * 每一部分向左的位移

    */

    private final static long MACHINE_LEFT = SEQUENCE_BIT;

    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;

    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

    private long datacenterId;  //数据中心

    private long machineId;    //机器标识

    private long sequence = 0L; //序列号

    private long lastStmp = -1L;//上一次时间戳

    public SnowFlake(long datacenterId, long machineId) {

        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {

            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");

        }

        if (machineId > MAX_MACHINE_NUM || machineId < 0) {

            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");

        }

        this.datacenterId = datacenterId;

        this.machineId = machineId;

    }

    /**

    * 产生下一个ID

    *

    * @return

    */

    public synchronized long nextId() {

        long currStmp = getNewstmp();

        if (currStmp < lastStmp) {

            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");

        }

        if (currStmp == lastStmp) {

            //相同毫秒内,序列号自增

            sequence = (sequence + 1) & MAX_SEQUENCE;

            //同一毫秒的序列数已经达到最大

            if (sequence == 0L) {

                currStmp = getNextMill();

            }

        } else {

            //不同毫秒内,序列号置为0

            sequence = 0L;

        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分

                | datacenterId << DATACENTER_LEFT      //数据中心部分

                | machineId << MACHINE_LEFT            //机器标识部分

                | sequence;                            //序列号部分

    }

    private long getNextMill() {

        long mill = getNewstmp();

        while (mill <= lastStmp) {

            mill = getNewstmp();

        }

        return mill;

    }

    private long getNewstmp() {

        return System.currentTimeMillis();

    }

    public static void main(String[] args) {

        SnowFlake snowFlake = new SnowFlake(2, 3);

        for (int i = 0; i < (1 << 12); i++) {

            System.out.println(snowFlake.nextId());

        }

    }

}

工程落地经验

hutools工具包

地址:https://github.com/looly/hutool

SpringBoot整合雪花算法

引入hutool工具类

<dependency>

    <groupId>cn.hutool</groupId>

    <artifactId>hutool-all</artifactId>

    <version>5.3.1</version>

</dependency>

整合

/**

* 雪花算法

*

* @author: 陌溪

*/

public class SnowFlakeDemo {

    private long workerId = 0;

    private long datacenterId = 1;

    private Snowflake snowFlake = IdUtil.createSnowflake(workerId, datacenterId);

    @PostConstruct

    public void init() {

        try {

            // 将网络ip转换成long

            workerId = NetUtil.ipv4ToLong(NetUtil.getLocalhostStr());

        } catch (Exception e) {

            e.printStackTrace();

        }

    }

    /**

    * 获取雪花ID

    * @return

    */

    public synchronized long snowflakeId() {

        return this.snowFlake.nextId();

    }

    public synchronized long snowflakeId(long workerId, long datacenterId) {

        Snowflake snowflake = IdUtil.createSnowflake(workerId, datacenterId);

        return snowflake.nextId();

    }

    public static void main(String[] args) {

        SnowFlakeDemo snowFlakeDemo = new SnowFlakeDemo();

        for (int i = 0; i < 20; i++) {

            new Thread(() -> {

                System.out.println(snowFlakeDemo.snowflakeId());

            }, String.valueOf(i)).start();

        }

    }

}

得到结果

1251350711346790400

1251350711346790402

1251350711346790401

1251350711346790403

1251350711346790405

1251350711346790404

1251350711346790406

1251350711346790407

1251350711350984704

1251350711350984706

1251350711350984705

1251350711350984707

1251350711350984708

1251350711350984709

1251350711350984710

1251350711350984711

1251350711350984712

1251350711355179008

1251350711355179009

1251350711355179010

优缺点

优点

毫秒数在高维,自增序列在低位,整个ID都是趋势递增的

不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。另外,搜索公众号Java架构师技术后台回复“聊天系统”,获取一份惊喜礼包。

可以根据自身业务特性分配bit位,非常灵活

缺点

依赖机器时钟,如果机器时钟回拨,会导致重复ID生成

在单机上是递增的,但由于涉及到分布式环境,每台机器上的时钟不可能完全同步,有时候会出现不是全局递增的情况,此缺点可以认为无所谓,一般分布式ID只要求趋势递增,并不会严格要求递增,90%的需求只要求趋势递增。

其它补充

为了解决时钟回拨问题,导致ID重复,后面有人专门提出了解决的方案1) 百度开源的分布式唯一ID生成器 UidGenerator

2) Leaf - 美团点评分布式ID生成系统


原文链接

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容