(imooc)神经网络简介

课程背景

image.png

image.png

image.png

什么是神经网络

image.png
image.png

图像语音密集矩阵
文本稀疏矩阵

课程安排

image.png

网络结构

image.png

eg 在图中四个隐含层,一个输出层
从x到y 一个预测的过程
更深的网络比更宽的网络在计算上节省,当深度层增加,每一层增加一个解,见微知著,不断剖析,对应神经网络的深度增长。
每一个神经元的设计体现非线性分析
对每一个神经元


image.png

这是一个神经元结点的结构



第一部分:对输入线性组合
第二部分:进行非线性处理 g(z)对线性组合转化成非线性的结果

逻辑回归

最小的结构单元:每个神经元节点独立具有判断问题的能力,该结点本身是一个逻辑回归的模型



对单独一个神经元


image.png

同样可以进行机器学习的过程,左侧输入,右侧输出(预测值),通过W和B这两个参数对x进行线性化,通过激励函数的到预测值

激励函数

image.png
image.png

模拟神经元被激发的状态变化(非线性),对大脑中的传递递质的动作模拟

常用神经元


image.png

RELU简单常用,是首选

损失函数

评价学习y值与预期y值
image.png

梯度下降

通过渐进性方式调整整个函数的形态or performance


zhidao

调整参数为W b 找到合理组合使得机器学习得到的y值与现实中监督的真正y值一致,从而指导预测结果


image.png

根据运算结果预测值x0在凸的部分进行数学处理。。。。

(:=代表同步更新)
在进行运算,指导w.b趋向稳定值

网络向量化


传播过程


image.png

输入到隐含层,四个隐含层生成一个输出值,即训练得到的y值


image.png
image.png

写成对应的矩阵表达式


image.png

把这种简单模型进行推广
对比较大的神经网络
得到层与层之间的关系


y

网络梯度下降

*对神经元的参数的调教(反向传播)
通过运算结果逆向调整wb参数

向前传播的规则


image.png

对每一层


image.png

训练过程

image.png

eg。简单神经网络


image.png

一次运算完成后,翻过来更新wbyua

再进行运算,再更新。
反复这两个训练过程


image.png

按层计算,算好后更新

总结

image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,454评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,553评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,921评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,648评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,770评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,950评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,090评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,817评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,275评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,592评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,724评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,409评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,052评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,815评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,043评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,503评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,627评论 2 350

推荐阅读更多精彩内容