问题汇总(4):聚类

聚类说实话除了K-means,其他的我都不太懂,,,不懂也得写啊!!!


目录:
机器学习常见面试问题汇总
问题汇总(1):逻辑回归
问题汇总(2):支持向量机
问题汇总(3):树模型
问题汇总(4):聚类
问题汇总(5):神经网络
问题汇总(6):EM算法
问题汇总(7):朴素贝叶斯


聚类算法有哪些?

聚类算法概览

  • 基于分层
  • 基于划分
  • 基于密度
  • 基于模型
  • 基于网格

K-Means

伪代码:

选取k个初始质心(作为初始cluster);
repeat:
    对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster;
    重新计算k个cluser对应的质心;
until 质心不再发生变化

K-Means的主要优点有:
1)原理比较简单,实现也是很容易,收敛速度快。
2)聚类效果较优。
3)算法的可解释度比较强。
4)主要需要调参的参数仅仅是簇数k。

K-Means的主要缺点有:
1)K值的选取不好把握,以及最开始质心的位置选取与结果关系也很大。
2)对于不是凸的数据集比较难收敛。
3)如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。
4) 采用迭代方法,得到的结果只是局部最优
5) k-means把任何点都归到了某一个类,对噪音和异常点比较的敏感。

如何确定K值的选取

kmeans的k值选取方法

  1. 手肘法(不断增大k,然后关注误差平方和这个指标,选择拐点处作为最优k值)


    手肘法
  2. 轮廓系数法(求轮廓系数,平均轮廓系数越大,聚类效果越好,平均轮廓系数最大的k便是最佳聚类数。)


    轮廓系数法

DBSCAN

DBSCAN密度聚类

是相对抗噪音的,并且能处理任意形状和大小的簇。但是如果簇的密度变化很大,就会出现一些问题。


Kmeans 和 DBSCAN对比:

优缺点对比

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352