开场舞蹈 #普及组#

题目

Problem Description

在全世界人民的期盼下,2008年北京奥林匹克运动会终于隆重召开了!

为了展示中华民族博大精深的优秀传统文化,负责开幕式开场舞蹈的编排人员一丝不苟,每一个细节都力争完美。关于队伍是采用“天圆”阵还是“地方”阵的问题,大家讨论了七天七夜,仍没有结果。于是,他们希望借助计算机,计算两种阵型的成本。

队伍将排列在一个二维平面内,且必须以(0,0)点为中心使得队伍保持对称美。“天圆”阵是一个圆形,而“地方”阵则是一个边平行于坐标轴的正方形。由于某种因素,阵型要求覆盖某些点(可以在边上)。

你的任务是,计算出能够覆盖这些点的两种阵型的最小面积。

Input

第一行是一个整数n(1<=n<=100000),表示需要覆盖的点的个数。接下来n行,第i行是两个整数xi,yi(-1000<=xi,yi<=1000),表示第i个点的坐标位置(xi,yi)。

Output

第一行是一个整数s1,表示能够覆盖这些点的“天圆”阵的最小面积(pi=3.14,四舍五入)。第二行是一个整数s2,表示能够覆盖这些点的“地方”阵的最小面积。

Sample Input

4

0 0

0 2

5 0

8 0

Sample Output

201

256


思路

我靠,乍一看弄得我以为要搞图论,其实十分简单.

首先明确一下步骤

1.输入

2.循环求两个阵的面积

3.输出

好,具体实施请看下面↓

1.输入

输入代码不要我说,你们都懂吧~

scanf("%d", &n);
for(int i = 1; i <= n; i++)
    scanf("%d%d", &x[i], &y[i]);

2.循环求两个阵的面积

其实也很easy啦

求方阵边长,就将每个给的坐标里,不管横纵,取最大值再*2.

再求面积.

注意,因为坐标正负与面积无关系,所以先自身取绝对值.

求圆阵也简单,利用勾股定理,求出半径.

for(int i = 1; i <= n; i++)
{
    x[i] = abs(x[i]);   
    y[i] = abs(y[i]);//绝对值
    /*-------------------------------*/
    jzbc = max(x[i] * 2, max(y[i] * 2, jzbc));//判断最大的边长
    jzmj = jzbc * jzbc;//求面积
    /*-------------------------------*/
    ybj = max(ybj, sqrt(x[i] * x[i] + y[i] * y[i]));//求最大半径
    ymj = pi * ybj * ybj;//面积
}

好了,细节不在强调.

贴完整代码.

#include <cstdio>
#include <cmath>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n;
int x[100001], y[100001];
const double pi = 3.14; 
int jzbc, jzmj;
double ybj, ymj;
int main()
{
    scanf("%d", &n);
    for(int i = 1; i <= n; i++)
        scanf("%d%d", &x[i], &y[i]);
    for(int i = 1; i <= n; i++)
    {
        x[i] = abs(x[i]);
        y[i] = abs(y[i]);
        /*-------------------------------*/
        jzbc = max(x[i] * 2, max(y[i] * 2, jzbc));
        jzmj = jzbc * jzbc;
        /*-------------------------------*/
        ybj = max(ybj, sqrt(x[i] * x[i] + y[i] * y[i]));
        ymj = pi * ybj * ybj;
    }
    printf("%.0lf\n%d",ymj , jzmj);
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容