[一起学Hive]之一–Hive概述,Hive是什么

1. Hive是什么

Hive是基于Hadoop的数据仓库解决方案。由于Hadoop本身在数据存储和计算方面有很好的可扩展性和高容错性,因此使用Hive构建的数据仓库也秉承了这些特性。

这是来自官方的解释。

简单来说,Hive就是在Hadoop上架了一层SQL接口,可以将SQL翻译成MapReduce去Hadoop上执行,这样就使得数据开发和分析人员很方便的使用SQL来完成海量数据的统计和分析,而不必使用编程语言开发MapReduce那么麻烦。

先上一张经典的Hive架构图:

Hive结构图

Hive架构图

如图中所示,Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
在使用过程中,至需要将Hive看做是一个数据库就行,本身Hive也具备了数据库的很多特性和功能。

2. Hive擅长什么

Hive可以使用HQL(Hive SQL)很方便的完成对海量数据的统计汇总,即席查询和分析,除了很多内置的函数,还支持开发人员使用其他编程语言和脚本语言来自定义函数。

但是,由于Hadoop本身是一个批处理,高延迟的计算框架,Hive使用Hadoop作为执行引擎,自然也就有了批处理,高延迟的特点,在数据量很小的时候,Hive执行也需要消耗较长时间来完成,这时候,就显示不出它与Oracle,Mysql等传统数据库的优势。

此外,Hive对事物的支持不够好,原因是HDFS本身就设计为一次写入,多次读取的分布式存储系统,因此,不能使用Hive来完成诸如DELETE、UPDATE等在线事务处理的需求。

因此,Hive擅长的是非实时的、离线的、对响应及时性要求不高的海量数据批量计算,即席查询,统计分析。

3. Hive的数据单元

  • Databases:数据库。概念等同于关系型数据库的Schema,不多解释;
  • Tables:表。概念等同于关系型数据库的表,不多解释;
  • Partitions:分区。概念类似于关系型数据库的表分区,没有那么多分区类型,只支持固定分区,将同一组数据存放至一个固定的分区中。
  • Buckets (or Clusters):分桶。同一个分区内的数据还可以细分,将相同的KEY再划分至一个桶中,这个有点类似于HASH分区,只不过这里是HASH分桶,也有点类似子分区吧。

4. Hive的数据类型

既然是被当做数据库来使用,除了数据单元,Hive当然也得有一些列的数据类型。这里先简单描述下,后续章节会有详细的介绍。

4.1 原始数据类型

  • 整型
    • TINYINT — 微整型,只占用1个字节,只能存储0-255的整数。
    • SMALLINT– 小整型,占用2个字节,存储范围–32768 到 32767。
    • INT– 整型,占用4个字节,存储范围-2147483648到2147483647。
    • BIGINT– 长整型,占用8个字节,存储范围-263到263-1。
  • 布尔型
    • BOOLEAN — TRUE/FALSE
  • 浮点型
    • FLOAT– 单精度浮点数。
    • DOUBLE– 双精度浮点数。
  • 字符串型
    • STRING– 不设定长度。

4.2 复合数据类型

  • Structs:一组由任意数据类型组成的结构。比如,定义一个字段C的类型为STRUCT {a INT; b STRING},则可以使用a和C.b来获取其中的元素值;
  • Maps:和Java中的Map没什么区别,就是存储K-V对的;
  • Arrays:就是数组而已;

Hive相关文章(持续更新)

一起学Hive系列

Hive分析函数系列

Hive索引

hive优化之——控制hive任务中的map数和reduce数

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容