最全的AI速查表|神经网络,机器学习,深度学习,大数据

作者:Stefan Kojouharov
编译:ronghuaiyang
原文链接:https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463

过去的几个月中,我都在收集AI速查表。我时不时的分享给同学和朋友,他们经常问我要。所以我决定整理一下,发出来。为了让这件事情更加有趣,我对每个主题加了点描述。

这个应该是史上最全的了,希望你喜欢...

神经网络

神经网络图

机器学习概述

机器学习: Scikit-learn算法

这个速查表可以帮助你为你的任务找到合适的estimator,这个是工作中最困难的地方。流向图帮助你查找文档,estimator也能大致的帮助你更加好的理解你的问题,以及如何解决问题。

Scikit-Learn

Scikit-learn 是一个开源的机器学习Python库。功能包括分类,回归,聚类,算法包括支持向量机,随机森林,梯度提升,k均值和密度聚类算法。而且和Python的数值处理库如Numpy和SciPy能够互通。

机器学习 : 算法速查表

这是一个来自Microsoft Azure的机器学习速查表,你可以为你的预测任务选取合适的机器学习的算法。首选,速查表会问你数据的形式,然后给你一个适合你的任务的最佳的算法建议。

用Python做数据科学

TensorFlow

在2017年的5月,Google发布了第二代的TPU,第二代的TPU有高达180 teraflops的性能,64个TPU的集群可以提供11.5 petaflops的计算能力。

Keras

在2017年,Google的TensorFlow决定在其核心库中支持Keras。Keras是一套接口,而不是一个机器学习的框架。它提供一套高级的,更加直接的抽象功能,使得配置一个神经网络更加的容易,而不用管背后是哪个计算库。

Numpy

Numpy是一个没有优化过的解释器,目的是用Python来实现CPython中的东西。使用这个版本的数学计算往往比较慢。Numpy提供了多维数组的计算和操作,非常的有效,当需要重用代码时,大部分的内部的循环都是使用Numpy。

Pandas

这个名字是来自于 “panel data”,是一个经济学的词语,用来处理多维度的结构化的数据。

数据整理 data wrangler

"data wrangler"这个词开始于流行文化的渗透。在2017年的电影 Kong: Skull Island,其中一个角色,被介绍为“Steve Woodward, our data wrangler”。

Scipy

Scipy是基于Numpy的数组的对象构建的,是Numpy的一部分,包括的工具如 Matplotlib, pandas and SymPy,还有一个科学计算的扩展库。Numpy和其他的一些科学计算工具如 MATLAB, GNU Octave, and Scilab很像。Numpy的技术栈也有时候叫做SciPy 技术栈。

Matplotlib

matplotlib是一个基于Python的绘图库,是Numpy的一个扩展。提供了面向对象的API。

pyplot是一个matplotlib的模块,提供了类似Matlab的绘图接口,可以像Matlab一样简单易用,而且免费。

资源

数据科学速查表: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics

数据整理速查表: https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

数据整理: https://en.wikipedia.org/wiki/Data_wrangling

Keras速查表: https://www.datacamp.com/community/blog/keras-cheat-sheet#gs.DRKeNMs

Keras: https://en.wikipedia.org/wiki/Keras

机器学习速查表: https://ai.icymi.email/new-machinelearning-cheat-sheet-by-emily-barry-abdsc/

机器学习速查表: https://docs.microsoft.com/en-in/azure/machine-learning/machine-learning-algorithm-cheat-sheet

机器学习速查表: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

Matplotlib速查表: https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet#gs.uEKySpY

Matpotlib: https://en.wikipedia.org/wiki/Matplotlib

神经网络速查表: http://www.asimovinstitute.org/neural-network-zoo/

神经网络图速查表: http://www.asimovinstitute.org/blog/

神经网络: https://www.quora.com/Where-can-find-a-cheat-sheet-for-neural-network

Numpy速查表: https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.AK5ZBgE

NumPy: https://en.wikipedia.org/wiki/NumPy

Pandas速查表: https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.oundfxM

Pandas: https://en.wikipedia.org/wiki/Pandas_(software)

Pandas速查表: https://www.datacamp.com/community/blog/pandas-cheat-sheet-python#gs.HPFoRIc

Scikit速查表: https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet

Scikit-learn: https://en.wikipedia.org/wiki/Scikit-learn

Scikit-learn速查表: http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html

Scipy速查表: https://www.datacamp.com/community/blog/python-scipy-cheat-sheet#gs.JDSg3OI

SciPy: https://en.wikipedia.org/wiki/SciPy

TesorFlow速查表: https://www.altoros.com/tensorflow-cheat-sheet.html

本文可以任意转载,转载时请注明作者及原文地址。

请长按或扫描二维码关注我们
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,383评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,522评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,852评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,621评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,741评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,929评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,076评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,803评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,265评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,582评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,716评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,395评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,039评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,027评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,488评论 2 361
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,612评论 2 350

推荐阅读更多精彩内容