损失函数选择

机器学习算法中最终优化的为模型的损失函数,而损失函数各种各样,对于不同的模型,选择什么样的损失函数才比较合适。本文主要记录损失函数的种类以及适用场景。

机器学习算法主要解决分类问题回归问题两大类,因此损失函数主要也可以分成这两大类别。

分类损失

Hinge Loss(合页损失函数)

hinge loss通常被用于最大间隔算法(Maximum margin),例如SVM支持向量机算法。

image.png

当样本被正确分类(y(wx+b) >=1)时,损失函数的值为0,否则损失函数值为1-y(wx+b)

y(wx+b)的绝对值表示的是样本距离决策边界的远近程度,绝对值越大,表示样本距离决策越远。

hinge损失函数表示分类器不仅需要正确分类,而且需要确信度足够高时,损失才会是0,即hinge loss对学习的要求更高。

交叉熵损失函数

交叉熵刻画两个概率分布之间的距离,因此将交叉熵作为损失函数可以很好的刻画真实数据集和训练测试集之间的相似性。

现在有一个样本集中两个概率分布p,q,其中p为真实分布,q为非真实分布。假如,按照真实分布p来衡量识别一个样本所需要的编码长度的期望为:

H(p)=\sum_i{p_i \cdot log(\frac{1}{p(i)})}

但是,如果采用错误的分布q来表示来自真实分布p的平均编码长度,则应该是:

H(p,q)=\sum_i{p_i \cdot log(\frac{1}{q(i)})}

此时就将H(p,q)称之为交叉熵。

交叉熵损失函数为:
CrossEntropyLoss = -(y_i log(\hat y_{i}) + (1-y_i)log(1-\hat y_i))

当实际标签为 1时,函数的只剩前半部分,而当实际标签是为 0 时,函数只剩后半部分,即我们只是把对真实值类别的实际预测概率的对数相乘。

回归损失

均方误差(Mean Square Error),L2损失

均方误差(MSE)是最常用的回归损失函数。MSE是目标变量与预测值之间距离平方之和。

MSE = \frac{\sum_{i=1}^{n}(y_i - y_i^p)^2}{n}

平均绝对误差(Mean Absolute Error),L1损失

平均绝对误差(MAE)是另一种用于回归模型的损失函数。MAE是目标变量和预测变量之间差异绝对值之和。

MAE = \frac{\sum_{i=1}^{n}|y_i - y_i^p|}{n}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,734评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,931评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,133评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,532评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,585评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,462评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,262评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,153评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,587评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,792评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,919评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,635评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,237评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,855评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,983评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,048评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,864评论 2 354

推荐阅读更多精彩内容