def downcast(df):
cols = df.dtypes.index.tolist()
types = df.dtypes.values.tolist()
for i,t in enumerate(types):
if 'int' in str(t):
if df[cols[i]].min() > np.iinfo(np.int8).min and df[cols[i]].max() < np.iinfo(np.int8).max:
df[cols[i]] = df[cols[i]].astype(np.int8)
elif df[cols[i]].min() > np.iinfo(np.int16).min and df[cols[i]].max() < np.iinfo(np.int16).max:
df[cols[i]] = df[cols[i]].astype(np.int16)
elif df[cols[i]].min() > np.iinfo(np.int32).min and df[cols[i]].max() < np.iinfo(np.int32).max:
df[cols[i]] = df[cols[i]].astype(np.int32)
else:
df[cols[i]] = df[cols[i]].astype(np.int64)
elif 'float' in str(t):
if df[cols[i]].min() > np.finfo(np.float16).min and df[cols[i]].max() < np.finfo(np.float16).max:
df[cols[i]] = df[cols[i]].astype(np.float16)
elif df[cols[i]].min() > np.finfo(np.float32).min and df[cols[i]].max() < np.finfo(np.float32).max:
df[cols[i]] = df[cols[i]].astype(np.float32)
else:
df[cols[i]] = df[cols[i]].astype(np.float64)
elif t == np.object:
if cols[i] == 'date':
df[cols[i]] = pd.to_datetime(df[cols[i]], format='%Y-%m-%d')
else:
df[cols[i]] = df[cols[i]].astype('category')
return df
sales_ad = np.round(sales.memory_usage().sum()/(1024*1024),1)
calendar_ad = np.round(calendar.memory_usage().sum()/(1024*1024),1)
prices_ad = np.round(prices.memory_usage().sum()/(1024*1024),1)</pre>