LeakCanary源码解析

LeakCanary

一个内存泄漏检测库,适用于Android和Java环境

“A small leak will sink a great ship.” - Benjamin Franklin

小漏不补沉大船

使用效果如下图:

demo效果截图.png
demo效果截图.png

接入步骤如下:

在你项目对应 build.gradle添加:

 dependencies {
   debugCompile 'com.squareup.leakcanary:leakcanary-android:1.5.1'
   releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.5.1'
   testCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.5.1'
 }

在你项目对应 Application 添加初始化:

public class ExampleApplication extends Application {

  @Override public void onCreate() {
    super.onCreate();
    if (LeakCanary.isInAnalyzerProcess(this)) {
      // This process is dedicated to LeakCanary for heap analysis.
      // You should not init your app in this process.
      return;
    }
    LeakCanary.install(this);
    // Normal app init code...
  }
}

接入完成! LeakCanary在发现内存泄漏的时候会弹出通直栏以及创建一个快捷方式,每个泄漏对应一个快捷方式,快捷方式图标图标如下:有问题请点击!

内存泄露图标.png
内存泄露图标.png

LeakCanray实现原理

基础概念

ActivityLifecycleCallbacks

public interface ActivityLifecycleCallbacks {
    void onActivityCreated(Activity activity, Bundle savedInstanceState);
    void onActivityStarted(Activity activity);
    void onActivityResumed(Activity activity);
    void onActivityPaused(Activity activity);
    void onActivityStopped(Activity activity);
    void onActivitySaveInstanceState(Activity activity, Bundle outState);
    void onActivityDestroyed(Activity activity);
}

Application通过此接口提供了一套回调方法,用于让开发者对Activity的生命周期事件进行集中处理,可用于替换runningProcess或者runningTasks,判断 app 是否在后台运行
Android 4.0 (API Level 14) 引入

Java对象的强、软、弱和虚引用

强引用(StrongReference)
强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它。当内存空间不足,Java虚拟机宁愿抛出OutOfMemoryError错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。

软引用(SoftReference)
如果一个对象只具有软引用,则内存空间足够,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。只要垃圾回收器没有回收它,该对象就可以被程序使用。软引用可用来实现内存敏感的高速缓存(下文给出示例)。软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。

弱引用(WeakReference)
弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。

虚引用(PhantomReference)
“虚引用”顾名思义,就是形同虚设,与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。虚引用主要用来跟踪对象被垃圾回收器回收的活动。虚引用与软引用和弱引用的一个区别在于:虚引用必须和引用队列 (ReferenceQueue)联合使用。当垃圾回收器准备回收一个对象时,如果发现它还有虚引用,就会在回收对象的内存之前,把这个虚引用加入到与之 关联的引用队列中。

工作机制

LeakCannary检测泄露主要分三步:

1.关联需要监听的对象 leakcanary-android

2.检测监听对象是否存在泄露嫌疑,如果存在嫌疑,就dump出内存快照到*.hprof文件 leakcanary-watcher

3.通过分析*.hprof文件确认是否真正泄露,泄露了就保存并展示结果 leakcanary-analyzer

关联监听对象关键类ActivityRefWatcher

默认情况下,我们监听的是项目里的Activity.
利用ActivityLifecycleCallbacks的监听所有Activity生命周期,在Activity被销毁时进行泄露检测

private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
      new Application.ActivityLifecycleCallbacks() {
        @Override public void onActivityCreated(Activity activity, Bundle savedInstanceState) {
        }

        @Override public void onActivityStarted(Activity activity) {
        }

        @Override public void onActivityResumed(Activity activity) {
        }

        @Override public void onActivityPaused(Activity activity) {
        }

        @Override public void onActivityStopped(Activity activity) {
        }

        @Override public void onActivitySaveInstanceState(Activity activity, Bundle outState) {
        }

        @Override public void onActivityDestroyed(Activity activity) {
            // 最关键的,activity被销毁时,进行检查
          ActivityRefWatcher.this.onActivityDestroyed(activity);
        }
      };

我们也可以使用RefWatcher关联其他任何我们想要监听的对象:

// 使用 RefWatcher 监控 Fragment:
public abstract class BaseFragment extends Fragment {

  @Override public void onDestroy() {
    super.onDestroy();
    RefWatcher refWatcher = ExampleApplication.getRefWatcher(getActivity());
    refWatcher.watch(this); // watch传入的是Object对象
  }
}

确认是否进行分析,关键类RefWatcher

我们知道弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java虚拟机就会把这个弱引用加入到与之关联的引用队列中。
LeakCanary利用弱引用这个特性,将要监听的对象和ReferenceQueue队列联合使用,如果对象被垃圾系统回收,就会放到队列里,就可以利用这个队列找出没有被回收的对象,没有被回收的则怀疑可能发生了内存泄露,如下面的removeWeaklyReachableReferences()

// 这个方法执行完,retainedKeys列表里就剩下没有被系统回收的
private void removeWeaklyReachableReferences() {
    // WeakReferences are enqueued as soon as the object to which they point to becomes weakly
    // reachable. This is before finalization or garbage collection has actually happened.
    // queue里装的都算被垃圾系统回收的
    KeyedWeakReference ref;
    while ((ref = (KeyedWeakReference) queue.poll()) != null) {
      retainedKeys.remove(ref.key); // 删除已经被系统回收
    }
  }

下面看完整的流程,主要在ensureGone()

Retryable.Result ensureGone(final KeyedWeakReference reference, final long watchStartNanoTime) {
    long gcStartNanoTime = System.nanoTime();
    long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);

    // 1.删除已经被系统回收的对象
    removeWeaklyReachableReferences(); 

    if (debuggerControl.isDebuggerAttached()) {
      // The debugger can create false leaks.
      return RETRY;
    }
    // 2.判断没被回收的列表retainedKeys是否有reference对象
    if (gone(reference)) {
      return DONE;
    }
    // 3.调用gc
    gcTrigger.runGc();
    // 4.再次删除已经被系统回收的对象
    removeWeaklyReachableReferences();
    if (!gone(reference)) {
      // 5.retainedKeys列表里存在reference对象,存在泄漏嫌疑
      long startDumpHeap = System.nanoTime();
      long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
      // 6.dump出内存快照到*.hprof文件
      File heapDumpFile = heapDumper.dumpHeap();
      if (heapDumpFile == RETRY_LATER) {
        // Could not dump the heap.
        return RETRY;
      }
      long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
      // 7.触发对.hprof文件进行分析
      heapdumpListener.analyze(
          new HeapDump(heapDumpFile, reference.key, reference.name, excludedRefs, watchDurationMs,
              gcDurationMs, heapDumpDurationMs));
    }
    return DONE;
  }

  private boolean gone(KeyedWeakReference reference) {
    return !retainedKeys.contains(reference.key);
  }

分析*.hprof文件,找到泄露对象,并展示

ServiceHeapDumpListener实现了HeapDump.Listener接口,当RefWatcher发现可疑引用的之后,它将dump出来的*.hprof文件通过ServiceHeapDumpListener传递到HeapAnalyzerService

HeapAnalyzerService它主要是通过HeapAnalyzer.checkForLeak分析对象的引用,计算出到GC root的最短强引用路径。然后将分析结果传递给DisplayLeakService

public AnalysisResult checkForLeak(File heapDumpFile, String referenceKey) {
    long analysisStartNanoTime = System.nanoTime();
    // 判断*.hprof是否存在
    if (!heapDumpFile.exists()) {
      Exception exception = new IllegalArgumentException("File does not exist: " + heapDumpFile);
      return failure(exception, since(analysisStartNanoTime));
    }

    try {
      // 利用HAHA(基于MAT的堆栈解析库)将之前dump出来的内存文件解析成Snapshot对象
      HprofBuffer buffer = new MemoryMappedFileBuffer(heapDumpFile);
      HprofParser parser = new HprofParser(buffer);
      Snapshot snapshot = parser.parse(); 
      deduplicateGcRoots(snapshot);

      // 找到泄露对象,LeakCanary通过被泄漏对象的弱引用来在Snapshot中定位它。
      // 如果一个对象被泄漏,一定也可以在内存中找到这个对象的弱引用,再通过弱引用对象的referent就可以直接定位被泄漏对象
      Instance leakingRef = findLeakingReference(referenceKey, snapshot);

      // False alarm, weak reference was cleared in between key check and heap dump.
      if (leakingRef == null) {
        return noLeak(since(analysisStartNanoTime));
      }
      
      // 计算出一条有效的到被泄漏对象的最短的引用
      return findLeakTrace(analysisStartNanoTime, snapshot, leakingRef);
    } catch (Throwable e) {
      return failure(e, since(analysisStartNanoTime));
    }
  }

DisplayLeakService继承了AbstractAnalysisResultService。它主要是用来处理分析结果,将结果写入文件,然后在通知栏报警

// listenerClassName对应的就是DisplayLeakService
AbstractAnalysisResultService.sendResultToListener(this, listenerClassName, heapDump, result);

下面是以上步骤的时序图

泄漏监听时序图.jpg
泄漏监听时序图.jpg
泄漏处理时序图.jpg
泄漏处理时序图.jpg

其他说明

LeakCanary提供了ExcludedRefs来灵活控制是否需要将一些对象排除在考虑之外,因为在Android Framework,手机厂商rom自身也存在一些内存泄漏,对于开发者来说这些泄漏是我们无能为力的,所以在AndroidExcludedRefs中定义了很多排除考虑的类

未完待续。。。

风格:
1、所有接口内部都有个一个默认的实现
2、final类
3、没有util,Preconditions,AndroidDebuggerControl
4、import方式import static com.squareup.leakcanary.AnalysisResult.leakDetected

参考文章

http://vjson.com/wordpress/leakcanary%E6%BA%90%E7%A0%81%E5%88%86%E6%9E%90%E7%AC%AC%E4%B8%80%E8%AE%B2.html

//www.greatytc.com/p/5032c52c6b0a

http://coolpers.github.io/leakcanary%7Cmat/2015/06/04/LeakCanary-Brief.html

//www.greatytc.com/p/481775d198f0

https://www.liaohuqiu.net/cn/posts/leak-canary-read-me/

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容