面试阿里被质问:ConcurrentHashMap线程安全吗

没啥深入实践的理论系同学,在使用并发工具时,总是认为把HashMap改为ConcurrentHashMap,就完美解决并发了呀。或者使用写时复制的CopyOnWriteArrayList,性能更佳呀!技术言论虽然自由,但面对魔鬼面试官时,我们更在乎的是这些真的正确吗?2021Java面试宝典

1 线程重用导致用户信息错乱

生产环境中,有时获取到的用户信息是别人的。查看代码后,发现是使用了ThreadLocal缓存获取到的用户信息。

ThreadLocal适用于变量在线程间隔离,而在方法或类间共享的场景。
若用户信息的获取比较昂贵(比如从DB查询),则在ThreadLocal中缓存比较合适。
问题来了,为什么有时会出现用户信息错乱?

1.1 案例

使用ThreadLocal存放一个Integer值,代表需要在线程中保存的用户信息,初始null。
先从ThreadLocal获取一次值,然后把外部传入的参数设置到ThreadLocal中,模拟从当前上下文获取用户信息,随后再获取一次值,最后输出两次获得的值和线程名称。


图片


固定思维认为,在设置用户信息前第一次获取的值始终是null,但要清楚程序运行在Tomcat,执行程序的线程是Tomcat的工作线程,其基于线程池。
而线程池会重用固定线程,一旦线程重用,那么很可能首次从ThreadLocal获取的值是之前其他用户的请求遗留的值。这时,ThreadLocal中的用户信息就是其他用户的信息。

1.2 bug 重现

在配置文件设置Tomcat参数-工作线程池最大线程数设为1,这样始终是同一线程在处理请求:

server.tomcat.max-threads=1

先让用户1请求接口,第一、第二次获取到用户ID分别是null和1,符合预期


图片

用户2请求接口,bug复现!第一、第二次获取到用户ID分别是1和2,显然第一次获取到了用户1的信息,因为Tomcat线程池重用了线程。两次请求线程都是同一线程:http-nio-45678-exec-1

图片

写业务代码时,首先要理解代码会跑在什么线程上:

  • Tomcat服务器下跑的业务代码,本就运行在一个多线程环境(否则接口也不可能支持这么高的并发),并不能认为没有显式开启多线程就不会有线程安全问题

  • 线程创建较昂贵,所以Web服务器会使用线程池处理请求,线程会被重用。使用类似ThreadLocal工具存放数据时,需注意在代码运行完后,显式清空设置的数据。

1.3 解决方案

在finally代码块显式清除ThreadLocal中数据。即使新请求过来,使用了之前的线程,也不会获取到错误的用户信息。
修正后代码:


图片

ThreadLocal利用独占资源的解决线程安全问题,若就是要资源在线程间共享怎么办?就需要用到线程安全的容器。
使用了线程安全的并发工具,并不代表解决了所有线程安全问题。

1.4 ThreadLocalRandom 可将其实例设置到静态变量,在多线程下重用吗?

current()的时候初始化一个初始化种子到线程,每次nextseed再使用之前的种子生成新的种子:

UNSAFE.putLong(t = Thread.currentThread(), SEED,
r = UNSAFE.getLong(t, SEED) + GAMMA);

如果你通过主线程调用一次current生成一个ThreadLocalRandom实例保存,那么其它线程来获取种子的时候必然取不到初始种子,必须是每一个线程自己用的时候初始化一个种子到线程。
可以在nextSeed设置一个断点看看:

UNSAFE.getLong(Thread.currentThread(),SEED);

2 ConcurrentHashMap真的安全吗?

我们都知道ConcurrentHashMap是个线程安全的哈希表容器,但它仅保证提供的原子性读写操作线程安全。

2.1 案例

有个含900个元素的Map,现在再补充100个元素进去,这个补充操作由10个线程并发进行。

开发人员误以为使用ConcurrentHashMap就不会有线程安全问题,于是不加思索地写出了下面的代码:在每一个线程的代码逻辑中先通过size方法拿到当前元素数量,计算ConcurrentHashMap目前还需要补充多少元素,并在日志中输出了这个值,然后通过putAll方法把缺少的元素添加进去。

为方便观察问题,我们输出了这个Map一开始和最后的元素个数。


图片

访问接口


图片

分析日志输出可得:

  • 初始大小900符合预期,还需填充100个元素

  • worker13线程查询到当前需要填充的元素为49,还不是100的倍数

  • 最后HashMap的总项目数是1549,也不符合填充满1000的预期

2.2 bug 分析

ConcurrentHashMap就像是一个大篮子,现在这个篮子里有900个桔子,我们期望把这个篮子装满1000个桔子,也就是再装100个桔子。有10个工人来干这件事儿,大家先后到岗后会计算还需要补多少个桔子进去,最后把桔子装入篮子。

ConcurrentHashMap这篮子本身,可以确保多个工人在装东西进去时,不会相互影响干扰,但无法确保工人A看到还需要装100个桔子但是还未装时,工人B就看不到篮子中的桔子数量。你往这个篮子装100个桔子的操作不是原子性的,在别人看来可能会有一个瞬间篮子里有964个桔子,还需要补36个桔子。

ConcurrentHashMap对外提供能力的限制:

  • 使用不代表对其的多个操作之间的状态一致,是没有其他线程在操作它的。如果需要确保需要手动加锁

  • 诸如size、isEmpty和containsValue等聚合方法,在并发下可能会反映ConcurrentHashMap的中间状态。因此在并发情况下,这些方法的返回值只能用作参考,而不能用于流程控制。显然,利用size方法计算差异值,是一个流程控制

  • 诸如putAll这样的聚合方法也不能确保原子性,在putAll的过程中去获取数据可能会获取到部分数据

2.3 解决方案

整段逻辑加锁:


图片

只有一个线程查询到需补100个元素,其他9个线程查询到无需补,最后Map大小1000

图片

既然使用ConcurrentHashMap还要全程加锁,还不如使用HashMap呢?
不完全是这样。

ConcurrentHashMap提供了一些原子性的简单复合逻辑方法,用好这些方法就可以发挥其威力。这就引申出代码中常见的另一个问题:在使用一些类库提供的高级工具类时,开发人员可能还是按照旧的方式去使用这些新类,因为没有使用其真实特性,所以无法发挥其威力。

3 知己知彼,百战百胜

3.1 案例

使用Map来统计Key出现次数的场景。

  • 使用ConcurrentHashMap来统计,Key的范围是10

  • 使用最多10个并发,循环操作1000万次,每次操作累加随机的Key

  • 如果Key不存在的话,首次设置值为1。

show me code:


图片

有了上节经验,我们这直接锁住Map,再做

  • 判断

  • 读取现在的累计值

  • +1

  • 保存累加后值

这段代码在功能上的确毫无没有问题,但却无法充分发挥ConcurrentHashMap的性能,优化后:


图片

ConcurrentHashMap的原子性方法computeIfAbsent做复合逻辑操作,判断K是否存在V,若不存在,则把Lambda运行后结果存入Map作为V,即新创建一个LongAdder对象,最后返回V

因为computeIfAbsent返回的V是LongAdder,是个线程安全的累加器,可直接调用其increment累加。

这样在确保线程安全的情况下达到极致性能,且代码行数骤减。

3.2 性能测试

使用StopWatch测试两段代码的性能,最后的断言判断Map中元素的个数及所有V的和是否符合预期来校验代码正确性


图片

性能测试结果:

图片

比使用锁性能提升至少5倍。

3.3 computeIfAbsent高性能之道

Java的Unsafe实现的CAS。
它在JVM层确保写入数据的原子性,比加锁效率高:

static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                    Node<K,V> c, Node<K,V> v) {
    return U.compareAndSetObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}

所以不要以为只要用了ConcurrentHashMap并发工具就是高性能的高并发程序。

辨明 computeIfAbsent、putIfAbsent

  • 当Key存在的时候,如果Value获取比较昂贵的话,putIfAbsent就白白浪费时间在获取这个昂贵的Value上(这个点特别注意)

  • Key不存在的时候,putIfAbsent返回null,小心空指针,而computeIfAbsent返回计算后的值

  • 当Key不存在的时候,putIfAbsent允许put null进去,而computeIfAbsent不能,之后进行containsKey查询是有区别的(当然了,此条针对HashMap,ConcurrentHashMap不允许put null value进去)

3.4 CopyOnWriteArrayList 之殇

再比如一段简单的非 DB操作的业务逻辑,时间消耗却超出预期时间,在修改数据时操作本地缓存比回写DB慢许多。原来是有人使用了CopyOnWriteArrayList缓存大量数据,而该业务场景下数据变化又很频繁。

CopyOnWriteArrayList虽然是一个线程安全版的ArrayList,但其每次修改数据时都会复制一份数据出来,所以只适用读多写少或无锁读场景。

所以一旦使用CopyOnWriteArrayList,一定是因为场景适宜而非炫技。

CopyOnWriteArrayList V.S 普通加锁ArrayList读写性能

测试并发写性能

图片

测试结果:高并发写,CopyOnWriteArray比同步ArrayList慢百倍

图片

测试并发读性能

图片

测试结果:高并发读(100万次get操作),CopyOnWriteArray比同步ArrayList快24倍

图片

高并发写时,CopyOnWriteArrayList为何这么慢呢?因为其每次add时,都用Arrays.copyOf创建新数组,频繁add时内存申请释放性能消耗大。

4 总结

4.1 Don't !!!

  • 不要只会用并发工具,而不熟悉线程原理

  • 不要觉得用了并发工具,就怎么都线程安全

  • 不熟悉并发工具的优化本质,就难以发挥其真正性能

  • 不要不结合当前业务场景,就随意选用并发工具,可能导致系统性能更差

  • 2021Java面试宝典

4.2 Do !!!

  • 认真阅读官方文档,理解并发工具适用场景及其各API的用法,并自行测试验证,最后再使用

  • 并发bug本就不易复现, 多自行进行性能压力测试

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容