大师兄的Python源码学习笔记(五十四): Python的内存管理机制(九)

大师兄的Python源码学习笔记(五十三): Python的内存管理机制(八)
大师兄的Python源码学习笔记(五十五): Python的内存管理机制(十)

五、Python中的垃圾收集

2. 分代的垃圾收集
  • 无论何种语言开发,何种类型,何种规模的程序,都存在一个相似点:
  • 大部分的内存块的生命周期比较短,而另外一部分会比较长,甚至从程序开始持续到结束。
  • 这个比例通常在80%到98%之间。
  • 这点对于垃圾收集技术有重要意义:
  • 标记—清除这样的垃圾收集所带来的额外操作,实际上与系统中总的内存块数相关。
  • 所以当内存块数越少时,垃圾收集所带来的的额外操作越少,效率更高。
  • 基于这点,可以采用一种空间换时间的策略:
  • 将系统中的所有内存块根据其存货时间划分为不同的集合,每一个集合称为一
  • 垃圾收集的频率随着的存活时间的增大而减小,也就是说活得越长的对象,就越不可能是垃圾,应该更少去收集。
  • 存活的时间用垃圾收集动作的次数来衡量,如果一个对象经过的垃圾收集次数越多,其存活时间越长。
  • Python中的分代垃圾收集机制共分三
  • 所谓一代就是一个链表,所属同一代就是在同一个链表中。
  • 所以三代就是维护三个链表。
Include/internal/mem.h

struct gc_generation {
    PyGC_Head head;
    int threshold; /* collection threshold */
    int count; /* count of allocations or collections of younger
                  generations */
};
Modules/gcmodule.c

#define GEN_HEAD(n) (&_PyRuntime.gc.generations[n].head)

void
_PyGC_Initialize(struct _gc_runtime_state *state)
{
    state->enabled = 1; /* automatic collection enabled? */

#define _GEN_HEAD(n) (&state->generations[n].head)
    struct gc_generation generations[NUM_GENERATIONS] = {
        /* PyGC_Head,                                 threshold,      count */
        {{{_GEN_HEAD(0), _GEN_HEAD(0), 0}},           700,            0},
        {{{_GEN_HEAD(1), _GEN_HEAD(1), 0}},           10,             0},
        {{{_GEN_HEAD(2), _GEN_HEAD(2), 0}},           10,             0},
    };
    for (int i = 0; i < NUM_GENERATIONS; i++) {
        state->generations[i] = generations[i];
    };
    state->generation0 = GEN_HEAD(0);
    struct gc_generation permanent_generation = {
          {{&state->permanent_generation.head, &state->permanent_generation.head, 0}}, 0, 0
    };
    state->permanent_generation = permanent_generation;
}
  • _PyObject_GC_TRACK中,可以看到变量_PyGC_generation0,这是一个指针,它指向的正是第0代的内存块集合:
Include/objimpl.h

/* Tell the GC to track this object.  NB: While the object is tracked the
 * collector it must be safe to call the ob_traverse method. */
#define _PyObject_GC_TRACK(o) do { \
    PyGC_Head *g = _Py_AS_GC(o); \
    if (_PyGCHead_REFS(g) != _PyGC_REFS_UNTRACKED) \
        Py_FatalError("GC object already tracked"); \
    _PyGCHead_SET_REFS(g, _PyGC_REFS_REACHABLE); \
    g->gc.gc_next = _PyGC_generation0; \
    g->gc.gc_prev = _PyGC_generation0->gc.gc_prev; \
    g->gc.gc_prev->gc.gc_next = g; \
    _PyGC_generation0->gc.gc_prev = g; \
    } while (0);
  • 对于每一个gc_generation,其中的count记录了当前这条可收集对象链表中一共有多少个可收集对象。
  • _PyObject_GC_Alloc中,我们可以看到在分配内存后,都会进行count++动作,将第0代内存链表中所维护的内存块数量加1:
Modules/gcmodule.c

static PyObject *
_PyObject_GC_Alloc(int use_calloc, size_t basicsize)
{
    PyObject *op;
    PyGC_Head *g;
    ... ...
    _PyRuntime.gc.generations[0].count++; /* number of allocated GC objects */
    ... ...
}
  • 这意味着所有新创建的对象实际上都会被加入到第0代可收集对象链表中。
  • gc_generation中,threshold记录了该条可收集对象链表中最多可容纳多少个可收集对象,从源码中可以看到这个数字是700。
  • 也就是说一旦第0代内存链表的数量超过700,则会立即出发垃圾回收机制。
Modules/gcmodule.c

static Py_ssize_t
collect_generations(void)
{
    int i;
    Py_ssize_t n = 0;

    /* Find the oldest generation (highest numbered) where the count
     * exceeds the threshold.  Objects in the that generation and
     * generations younger than it will be collected. */
    for (i = NUM_GENERATIONS-1; i >= 0; i--) {
        if (_PyRuntime.gc.generations[i].count > _PyRuntime.gc.generations[i].threshold) {
            /* Avoid quadratic performance degradation in number
               of tracked objects. See comments at the beginning
               of this file, and issue #4074.
            */
            if (i == NUM_GENERATIONS - 1
                && _PyRuntime.gc.long_lived_pending < _PyRuntime.gc.long_lived_total / 4)
                continue;
            n = collect_with_callback(i);
            break;
        }
    }
    return n;
}
  • 虽然是由第0代内存链表的越界出发了垃圾收集,但Python会借机对所有满足count值越界的内存链表进行垃圾收集。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352

推荐阅读更多精彩内容