Paper| E2VPT: An Effective and Efficient Approach for Visual Prompt Tuning

1 intro

code: https://github.com/ChengHan111/E2VPT

  • task: parameter-efficient learning

  • method: effective and efficient visual prompt tuning (E^2VPT)

three types of existing parameter-efficient learning methods:

  1. partial tuning: finetune part of the backbone e.g., the cls head or last layers

  2. extra module: insert learnable bias or additional adapters

  3. Prompt tuning: add prompt tokens but without changing or fine-tuning backbone

image.png

limitations of existing work:

1) 现有方法没有改变transformer最核心的key-value操作;

2) 现有方法还是不够极致节省计算量

2 this paper

main idea:
1) prompt:visual tokens, + add learnable tokens into key-value prompts

2) prune:redunce the number of learnable parameters by pruning unnecessary prompts

image.png
  • 文章做法:对visual prompt和key-value prompt都进行efficient tuning;

对比的baselines & exp

image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容