并发--内存模型(JMM)

共享模型之内存

本章内容:

上一章讲解的 Monitor 主要关注的是访问共享变量时,保证临界区代码的原子性

这一章我们进一步深入学习共享变量在多线程间的【可见性】问题与多条指令执行时的【有序性】问题

1、JAVA内存模型(JMM)

JMM 即 Java Memory Model,它定义了主存(共享内存)、工作内存(线程私有)抽象概念,底层对应着 CPU 寄存器、缓存、硬件内存、 CPU 指令优化等。

JMM体现在以下几个方面

  • 原子性 - 保证指令不会受到线程上下文切换的影响
  • 可见性 - 保证指令不会受 cpu 缓存的影响
  • 有序性 - 保证指令不会受 cpu 指令并行优化的影响

2、可见性

退不出的循环

先来看一个现象,main 线程对 run 变量的修改对于 t 线程不可见,导致了 t 线程无法停止:

    static boolean run = true;

    public static void main(String[] args) throws InterruptedException {
        Thread t = new Thread(() -> {
            while (run) { // ....
            }
        });
        t.start();

        sleep(1);
        run = false; // 线程t不会如预想的停下来 }
    }

为什么呢?分析一下:

  1. 初始状态, t 线程刚开始从主内存读取了 run 的值到工作内存。
  1. 因为 t 线程要频繁从主内存中读取 run 的值,JIT 编译器会将 run 的值缓存至自己工作内存中的高速缓存中, 减少对主存中 run 的访问,提高效率
  1. 1 秒之后,main 线程修改了 run 的值,并同步至主存,而 t 是从自己工作内存中的高速缓存中读取这个变量 的值,结果永远是旧值

解决方法

volatile(易变关键字)
它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取 它的值,线程操作 volatile 变量都是直接操作主存。

可见性 vs 原子性

前面例子体现的实际就是可见性,它保证的是在多个线程之间,一个线程对 volatile 变量的修改对另一个线程可见, 不能保证原子性,仅用在一个写线程,多个读线程的情况: 上例从字节码理解是这样的:

  • 注意 synchronized 语句块既可以保证代码块的原子性,也同时保证代码块内变量的可见性。
  • 但缺点是 synchronized 是属于重量级操作,性能相对更低。
  • 如果在前面示例的死循环中加入 System.out.println() 会发现即使不加 volatile 修饰符,线程 t 也能正确看到 对 run 变量的修改了,想一想为什么?

因为使用了synchronized关键字

public void println(String x) {
        //使用了synchronized关键字
        synchronized (this) {
            print(x);
            newLine();
        }
    }

两阶段终止模式

在一个线程 T1 中如何“优雅”终止线程 T2?这里的【优雅】指的是给 T2 一个料理后事的机会。

1)错误思路

  • 使用线程对象的 stop() 方法停止线程
    stop 方法会真正杀死线程,如果这时线程锁住了共享资源,那么当它被杀死后就再也没有机会释放锁, 其它线程将永远无法获取锁
  • 使用 System.exit(int) 方法停止线程
    目的仅是停止一个线程,但这种做法会让整个程序都停止

2)两阶段终止模式

2.1 利用 isInterrupted

interrupt 可以打断正在执行的线程,无论这个线程是在 sleep,wait,还是正常运行

class TPTInterrupt {
    private Thread thread;

    public void start() {
        thread = new Thread(() -> {
            while (true) {
                Thread current = Thread.currentThread();
                if (current.isInterrupted()) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("将结果保存");
                } catch (InterruptedException e) {
                    current.interrupt();
                }
            // 执行监控操作 }
            },"监控线程");
            thread.start();
        }

        public void stop () {
            thread.interrupt();
        }
    }
}
TPTInterrupt t = new TPTInterrupt(); 
t.start();

Thread.sleep(3500); 
log.debug("stop"); 
t.stop()
11:49:43.915 c.TwoPhaseTermination [监控线程] - 将结果保存 
11:49:43.919 c.TwoPhaseTermination [监控线程] - 将结果保存 
11:49:44.919 c.TwoPhaseTermination [监控线程] - 将结果保存 
11:49:45.413 c.TestTwoPhaseTermination [main] - stop 
11:49:45.413 c.TwoPhaseTermination [监控线程] - 料理后事
2.2 利用停止标记
// 停止标记用 volatile 是为了保证该变量在多个线程之间的可见性 
// 我们的例子中,即主线程把它修改为 true 对 t1 线程可见
class TPTVolatile {
    private Thread thread;
    private volatile boolean stop = false;

    public void start() {
        thread = new Thread(() -> {
            while (true) {
                Thread current = Thread.currentThread();
                if (stop) {
                    log.debug("料理后事");
                    break;
                }
                try {
                    Thread.sleep(1000);
                    log.debug("将结果保存");
                } catch (InterruptedException e) {
                }
              // 执行监控操作 
              }
            },"监控线程");
            thread.start();
        }
        
        public void stop () {
            stop = true;
            thread.interrupt();
        }
    }
}

调用

TPTVolatile t = new TPTVolatile(); 
t.start();

Thread.sleep(3500); 
log.debug("stop"); 
t.stop();

同步模式之犹豫模式

定义:
Balking (犹豫)模式用在一个线程发现另一个线程或本线程已经做了某一件相同的事,那么本线程就无需再做 了,直接结束返回

实现:

class MonitorService {
    // 用来表示是否已经有线程已经在执行启动了 volatile可不用。
    private volatile boolean starting;

    public void start() {
        log.info("尝试启动监控线程...");
        synchronized (this) {
            if (starting) {
                return;
            }
            starting = true;
        }
        
        // 真正启动监控线程... }
    }
}

它还经常用来实现线程安全的单例

public final class Singleton {
    private Singleton() {
    }

    private static Singleton INSTANCE = null;

    public static synchronized Singleton getInstance() {
        if (INSTANCE != null) {
            return INSTANCE;
        }
        INSTANCE = new Singleton();
        return INSTANCE;
    }
}

对比一下保护性暂停模式:保护性暂停模式用在一个线程等待另一个线程的执行结果,当条件不满足时线程等待。

3、有序性

JVM 会在不影响正确性的前提下,可以调整语句的执行顺序,思考下面一段代码

static int I; 
static int j;

// 在某个线程内执行如下赋值操作
i = ...;
j = ...;

可以看到,至于是先执行 i 还是 先执行 j ,对最终的结果不会产生影响。所以,上面代码真正执行时,既可以是

i = ...; 
j = ...;

也可以是

j = ...;
i = ...; 

这种特性称之为『指令重排』,多线程下『指令重排』会影响正确性。为什么要有重排指令这项优化呢?从 CPU 执行指令的原理来理解

诡异的结果

    int num = 0;
    boolean ready = false;

    // 线程1 执行此方法
    public void actor1(I_Result r) {
        if (ready) {
            r.r1 = num + num;
        } else {
            r.r1 = 1;
        }
    }

    // 线程2 执行此方法
    public void actor2(I_Result r) {
        num = 2;
        ready = true;
        //上面两个赋值语句可能发生指令重排
    }

I_Result 是一个对象,有一个属性 r1 用来保存结果,问,可能的结果有几种?

情况1:线程1 先执行,这时 ready = false,所以进入 else 分支结果为 1
情况2:线程2 先执行 num = 2,但没来得及执行 ready = true,线程1 执行,还是进入 else 分支,结果为1
情况3:线程2 执行到 ready = true,线程1 执行,这回进入 if 分支,结果为 4

其实,结果还有可能是 0
这种情况下是:线程2 执行 ready = true,切换到线程1,进入 if 分支,相加为 0,再切回线程2 执行 num = 2 相信很多人已经晕了

这种现象叫做指令重排,是 JIT 编译器在运行时的一些优化,这个现象需要通过大量测试才能复现。需要压测工具测试。

解决方法

volatile 修饰的变量,可以禁用指令重排

    int num = 0;
    volatile boolean ready = false;

    public void actor1(I_Result r) {
        if (ready) {
            r.r1 = num + num;
        } else {
            r.r1 = 1;
        }
    }

    public void actor2(I_Result r) {
        num = 2;
        ready = true;
    }

volatile 原理

volatile 的底层实现原理是内存屏障,Memory Barrier(Memory Fence)

  • 对 volatile 变量的写指令后会加入写屏障
  • 对 volatile 变量的读指令前会加入读屏障

1)如何保证可见性

  • 写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
    public void actor2(I_Result r) {
        num = 2;
        ready = true; // ready 是 volatile 赋值带写屏障
        // 写屏障
    }
  • 而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据
    public void actor1(I_Result r) {
        // 读屏障
        // ready 是 volatile 读取值带读屏障
        if (ready) {
            r.r1 = num + num;
        } else {
            r.r1 = 1;
        }
    }

2)如何保证有序性

  • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
    public void actor2(I_Result r) {
        num = 2;
        ready = true; // ready 是 volatile 赋值带写屏障
        // 写屏障
    }
  • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前
    public void actor1(I_Result r) {
        // 读屏障
        // ready 是 volatile 读取值带读屏障
        if (ready) {
            r.r1 = num + num;
        } else {
            r.r1 = 1;
        }
    }

还是那句话,不能解决指令交错:

可见性:

  • 写屏障(sfence)保证在该屏障之前的,对共享变量的改动,都同步到主存当中
  • 而读屏障(lfence)保证在该屏障之后,对共享变量的读取,加载的是主存中最新数据

有序性:

  • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
  • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前

3)double-checked locking 问题

以著名的 double-checked locking 单例模式为例

public final class Singleton {
    private Singleton() {
    }

    private static Singleton INSTANCE = null;

    public static Singleton getInstance() {
        if (INSTANCE == null) { // t2
            // 首次访问会同步,而之后的使用没有 synchronized
            synchronized (Singleton.class) {
                if (INSTANCE == null) { // t1
                    INSTANCE = new Singleton();
                }
            }
        }
        return INSTANCE;
    }
}

以上的实现特点是:

  • 懒惰实例化
  • 首次使用 getInstance() 才使用 synchronized 加锁,后续使用时无需加锁
  • 有隐含的,但很关键的一点:第一个 if 使用了 INSTANCE 变量,是在同步块之外

但在多线程环境下,上面的代码是有问题的,getInstance 方法对应的字节码为:

其中

  • 17 表示创建对象,将对象引用入栈 // new Singleton
  • 20 表示复制一份对象引用 // 引用地址
  • 21 表示利用一个对象引用,调用构造方法
  • 24 表示利用一个对象引用,赋值给 static INSTANCE

也许 jvm 会优化为:先执行 24,再执行 21。如果两个线程 t1,t2 按如下时间序列执行:

关键在于 0: getstatic 这行代码在 monitor 控制之外,它就像之前举例中不守规则的人,可以越过 monitor 读取 INSTANCE 变量的值。

这时 t1 还未完全将构造方法执行完毕,如果在构造方法中要执行很多初始化操作,那么 t2 拿到的是将是一个未初 始化完毕的单例。

对 INSTANCE 使用 volatile 修饰即可,可以禁用指令重排,但要注意在 JDK 5 以上的版本的 volatile 才会真正有效。

sychrionized可以保证原子、可见、有序性,但不能保证指令重拍。INSTANCE在sychrionized块外。

4)double-checked locking 解决

public final class Singleton {
    private Singleton() {
    }

    private static volatile Singleton INSTANCE = null;

    public static Singleton getInstance() {
        // 实例没创建,才会进入内部的 synchronized代码块 
        if (INSTANCE == null) {
            synchronized (Singleton.class) { // t2
                // 也许有其它线程已经创建实例,所以再判断一次 
                if (INSTANCE == null) { // t1
                    INSTANCE = new Singleton();
                }
            }
        }
        return INSTANCE;
    }
}

字节码上看不出来 volatile 指令的效果

如上面的注释内容所示,读写 volatile 变量时会加入内存屏障(Memory Barrier(Memory Fence)),保证下面 两点:

可见性

  • 写屏障(sfence)保证在该屏障之前的 t1 对共享变量的改动,都同步到主存当中
  • 而读屏障(lfence)保证在该屏障之后 t2 对共享变量的读取,加载的是主存中最新数据

有序性

  • 写屏障会确保指令重排序时,不会将写屏障之前的代码排在写屏障之后
  • 读屏障会确保指令重排序时,不会将读屏障之后的代码排在读屏障之前

更底层是读写变量时使用 lock 指令来多核 CPU 之间的可见性与有序性

happens-before

happens-before 规定了对共享变量的写操作对其它线程的读操作可见,它是可见性与有序性的一套规则总结,抛 开以下 happens-before 规则,JMM 并不能保证一个线程对共享变量的写,对于其它线程对该共享变量的读可见

  • 线程解锁 m 之前对变量的写,对于接下来对 m 加锁的其它线程对该变量的读可见
    static int x;
    static Object m = new Object();

    new Thread(()-> {
        synchronized (m) {
            x = 10;
        }
    },"t1").start();
    
    new Thread(()-> {
        synchronized (m) {
            System.out.println(x);
        }
    },"t2").start();
  • 线程对 volatile 变量的写,对接下来其它线程对该变量的读可见
    volatile static int x;

    new Thread(()->{
        x = 10;
    },"t1").start();
    
    new Thread(()->{ 
        System.out.println(x);
    },"t2").start();
  • 线程 start 前对变量的写,对该线程开始后对该变量的读可见
static int x;

x = 10;

new Thread(()->{ 
    System.out.println(x);
},"t2").start();
  • 线程结束前对变量的写,对其它线程得知它结束后的读可见(比如其它线程调用 t1.isAlive() 或 t1.join()等待 它结束)
static  int x;

Thread t1 = new Thread(()->{ 
    x = 10;
},"t1"); t1.start();

t1.join(); 
System.out.println(x);
  • 线程 t1 打断 t2(interrupt)前对变量的写,对于其他线程得知 t2 被打断后对变量的读可见(通过 t2.interrupted 或 t2.isInterrupted)
    static int x;

    public static void main(String[] args) {
        Thread t2 = new Thread(() -> {
            while (true) {
                if (Thread.currentThread().isInterrupted()) {
                    System.out.println(x);
                    break;
                }
            }
        }, "t2");
        t2.start();

        new Thread(() -> {
            sleep(1);
            x = 10;
            t2.interrupt();
        }, "t1").start();
        
        while (!t2.isInterrupted()) {
            Thread.yield();
        }
        System.out.println(x);
    }
  • 对变量默认值(0,false,null)的写,对其它线程对该变量的读可见
  • 具有传递性,配合 volatile 的防指令重排,有下面的例子
    volatile static int x;
    static int y;

    new Thread(()->{
        y = 10;
        x = 20;
    },"t1").start();

    new Thread(()->{
        // x=20 对 t2 可见, 同时 y=10 也对 t2 可见
        System.out.println(x);
    },"t2").start();

线程安全单例

单例模式有很多实现方法,饿汉、懒汉、静态内部类、枚举类,试分析每种实现下获取单例对象(即调用getInstance)时的线程安全,并思考注释中的问题

饿汉式:类加载就会导致该单实例对象被创建
懒汉式:类加载不会导致该单实例对象被创建,而是首次使用该对象时才会创建

实现1:

// 问题1:为什么加 final
// 问题2:如果实现了序列化接口, 还要做什么来防止反序列化破坏单例
public final class Singleton implements Serializable {
    // 问题3:为什么设置为私有? 是否能防止反射创建新的实例?
    private Singleton() {
    }

    // 问题4:这样初始化是否能保证单例对象创建时的线程安全?
    private static final Singleton INSTANCE = new Singleton();

    // 问题5:为什么提供静态方法而不是直接将 INSTANCE 设置为 public, 说出你知道的理由 
    public static Singleton getInstance() {
        return INSTANCE;
    }

    public Object readResolve() {
        return INSTANCE;
    }
}
  1. 防止子类破坏单例
  2. 加上readResovle方法,返回单例对象;
  3. 防止实例化。不能。
  4. 更好的封装性;对单例可以控制;还可以用范型支持

实现2:

// 问题1:枚举单例是如何限制实例个数的 -定义多少个就是多少个
// 问题2:枚举单例在创建时是否有并发问题  -没有
// 问题3:枚举单例能否被反射破坏单例 -不能 
// 问题4:枚举单例能否被反序列化破坏单例 -可以避免
// 问题5:枚举单例属于懒汉式还是饿汉式 -饿
// 问题6:枚举单例如果希望加入一些单例创建时的初始化逻辑该如何做 -加构造方法
enum Singleton {
  INSTANCE; 
}

实现3:

public final class Singleton {
    private Singleton() {
    }

    private static Singleton INSTANCE = null;

    // 分析这里的线程安全, 并说明有什么缺点
    public static synchronized Singleton getInstance() {
        if (INSTANCE != null) {
            return INSTANCE;
        }
        INSTANCE = new Singleton();
        return INSTANCE;
    }
}

实现4: DCL

public final class Singleton {
    private Singleton() {
    }

    // 问题1:解释为什么要加 volatile ?
    private static volatile Singleton INSTANCE = null;

    // 问题2:对比实现3, 说出这样做的意义
    public static Singleton getInstance() {
        if (INSTANCE != null) {
            return INSTANCE;
        }

        synchronized (Singleton.class) {
            // 问题3:为什么还要在这里加为空判断, 之前不是判断过了吗
            if (INSTANCE != null) { // t2
                return INSTANCE;
            }

            INSTANCE = new Singleton();
            return INSTANCE;
        }

    }
}

实现5:

public final class Singleton {
    private Singleton() {
    }

    // 问题1:属于懒汉式还是饿汉式 --懒
    private static class LazyHolder {
        static final Singleton INSTANCE = new Singleton();
    }

    // 问题2:在创建时是否有并发问题--由jvm保证线程安全性
    public static Singleton getInstance() {
        return LazyHolder.INSTANCE;
    }
}

总结:
可见性--由JVM缓存优化引起的
有序性--有JVM指令重排优化引起
原子性--

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,682评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,277评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,083评论 0 355
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,763评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,785评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,624评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,358评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,261评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,722评论 1 315
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,900评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,030评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,737评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,360评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,941评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,057评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,237评论 3 371
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,976评论 2 355

推荐阅读更多精彩内容