岁岁年年人不同——LVS2019多媒体会议见闻(二)

在上一篇文章中记录了第一天的见闻,下面来看第二天。

今天听的第一场演讲来自芒果TV,主题是《QoE驱动的音画体验优化以及在芒果TV的实践》,平心而论,比较水。下面来简单看一下吧。
首先说生产端。第一点是根据视频qp值做自适应丢帧,极端场景下通过主动丢帧换取更好的画面质量


在这里插入图片描述

第二点是在生产端做视频去噪,用的是bm3d


在这里插入图片描述

第三点是视频增强,这里芒果tv只做基于边缘的视频增强,理由是不会增加太多的码率,同时收益也不错
在这里插入图片描述

第四点是基于人眼感兴趣区域的编码优化,也是老话题了
在这里插入图片描述

接下来说客户端,还是基于节省码率的考量,可以将很多源端的画质增强工作转移到客户端去做,比如色彩校正等,在客户端都可以利用opengl来实现。

最后说QoE评价与监控。讲师首先介绍了芒果tv所采用的基于机器学习的无参考画质评价模型,这里将常见的几种画质损伤类型用加权的方法得到最后的质量评价分


在这里插入图片描述

然后是一套舆情分析系统


在这里插入图片描述

基于以上两套系统,可以构建如下的QoE驱动的体验提升架构
在这里插入图片描述

第二场演讲是视频编解码专场的,来自百度云的《基于深度学习的内容自适应编码方法》。内容自适应编码最早由netflix提出,近年来国内厂商也开始广泛研究这项技术。

百度云的第一代自适应编码方案做法是以CRF=23时编码所得到的bpp作为视频复杂度的衡量指标,用DNN网络去做复杂度因子的预测,根据复杂度做自适应的编码。


在这里插入图片描述

在这里插入图片描述

到了第二代方案中,以VMAF结果作为驱动,使用DNN来预测编码参数,达到节省码率的目的

在这里插入图片描述

在这里插入图片描述

第三场演讲来自腾讯丽影实验室,介绍了无参考视频质量评价方法在视频增强中的应用。之所以探讨这个话题,是因为传统的无参考质量评价是为了让处理后的视频尽量逼近源视频,但是视频增强其实是改善了人眼的观看体验,此时的目标并非尽量逼近源视频,因此传统的质量评价方法也许不再适用。

从下面的打分情况就能看出,传统的编码损伤的rd曲线并不适用于通过锐化做视频增强的场景,在视频增强场景中,主观打分与锐化程度之间的关系类似于一个凸函数


在这里插入图片描述

腾讯的讲师说的很深奥,但本质上他们在这块的工作都是基于下面这篇论文来做的,在他的基础上做了一些改进


在这里插入图片描述

这篇论文原本是做图像质量评价的,那么如何应用到视频质量评价中呢?其实也很简单:对视频抽帧计算改进后的RankIQA,然后取平均值即可。目前还只是用在点播场景中,实现对视频增强效果的质量评价。
效果如下,下方的三个数字分别代表主观评价分、无参考质量评价分和锐化程度。可以看到,有时候过度锐化也会影响主观感知质量。
在这里插入图片描述

下午听的是视频编解码专场,主要是VVC和AVS3的新进展,这块基本在网上都能搜到,要是展开讲的话篇幅太多了~暂时略过


关注公众号,掌握更多多媒体领域知识与资讯

在这里插入图片描述

文章帮到你了?可以扫描如下二维码进行打赏,打赏多少您随意~

在这里插入图片描述

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,270评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,489评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,630评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,906评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,928评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,718评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,442评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,345评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,802评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,984评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,117评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,810评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,462评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,011评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,139评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,377评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,060评论 2 355

推荐阅读更多精彩内容