1、Count、FPKM、RPKM、TPM之间的转换
TPM相比于FPKM\RPKM,更加适用于不同样本之间的比较
#TPM (Transcripts Per Kilobase Million) 每千个碱基的转录每百万映射读取的Transcripts
counts2TPM <- function(count=count, efflength=efflen){
RPK <- count/(efflength/1000) #每千碱基reads (reads per kilobase) 长度标准化
PMSC_rpk <- sum(RPK)/1e6 #RPK的每百万缩放因子 (“per million” scaling factor ) 深度标准化
RPK/PMSC_rpk }
#FPKM/RPKM (Fragments/Reads Per Kilobase Million ) 每千个碱基的转录每百万映射读取的Fragments/reads
#RPKM与FPKM分别针对单端与双端测序而言,计算公式是一样的
counts2FPKM <- function(count=count, efflength=efflen){
PMSC_counts <- sum(count)/1e6 #counts的每百万缩放因子 (“per million” scaling factor) 深度标准化
FPM <- count/PMSC_counts #每百万reads/Fragments (Reads/Fragments Per Million) 长度标准化
FPM/(efflength/1000) }
#FPKM与TPM的转化
FPKM2TPM <- function(fpkm){
fpkm/sum(fpkm)*1e6 }
tpm <- as.data.frame(apply(counts,2,counts2TPM))
colSums(tpm)
fpkm <- as.data.frame(apply(counts,2,counts2FPKM))
colSums(fpkm)
tpm0 <- as.data.frame(apply(counts,2,FPKM2TPM))
colSums(tpm0)
> https://mp.weixin.qq.com/s/IUV9dSbRBK1nvetixKOCRw
2、一致性聚类(consensusclusterplus)
1)原理解读——https://blog.csdn.net/nixiang_888/article/details/122224201?fromshare=blogdetail&sharetype=blogdetail&sharerId=122224201&sharerefer=PC&sharesource=weixin_71400734&sharefrom=from_link