题目
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [-2,1,-3,4,-1,2,1,-5,4],
the contiguous subarray [4,-1,2,1] has the largest sum = 6.
解题之法
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int res = INT_MIN, curSum = 0;
for (int num : nums) {
curSum = max(curSum + num, num);
res = max(res, curSum);
}
return res;
}
};
分析
这道题让我们求最大子数组之和,并且要我们用两种方法来解。
首先是O(n)的解法,定义两个变量res和curSum,其中res保存最终要返回的结果,即最大的子数组之和,curSum初始值为0,每遍历一个数字num,比较curSum + num和num中的较大值存入curSum,然后再把res和curSum中的较大值存入res,以此类推直到遍历完整个数组,可得到最大子数组的值存在res中。
然后是分治法Divide and Conquer Approach,这个解法的时间复杂度是O(nlgn),类似于二分搜索法,我们需要把数组一分为二,分别找出左边和右边的最大子数组之和,然后还要从中间开始向左右分别扫描,求出的最大值分别和左右两边得出的最大值相比较取最大的那一个。