ForkJoinPool在生产环境中使用遇到的一个问题

1、背景

在我们的项目中有这么一个场景,需要消费kafka中的消息,并生成对应的工单数据。早些时候程序运行的好好的,但是有一天,我们升级了容器的配置,结果导致部分消息无法消费。而消费者的代码是使用CompletableFuture.runAsync(() -> {while (true){ ..... }}) 来实现的。
即:

  1. 需要消费Kafka topic的个数: 7个,每个线程消费一个topic
  2. 消费方式:使用线程池异步消费
  3. 消费池:默认的 ForkJoin 线程池???,并且没有做任何配置
  4. 是否会释放线程池中的核心线程: 不会释放
  5. 没出问题时容器配置: 2核4G
  6. 出问题时容器配置:4核8G,影响的结果:只有3个topic的数据可以消费。

2、容器2核4G可以正常消费

容器2核4G可以正常消费

即:此时程序会启动7个线程来进行消费。

3、容器4核8G只有部分可以消费

容器4核8G只有部分可以消费

即:此时程序会启动3个线程来进行消费。

4、问题原因分析

1、通过上面的背景我们可以知道,是因为升级了容器的配置,才导致我们消费kafka中的消息失败了。
2、针对kafka中的每个topic,我们都会使用一个单独的线程来消费,并且不会释放这个线程。
3、而线程的启动方式是通过CompletableFuture.runAsync()方法来启动的,那么通过这种方式启动的线程,是每个任务一个启动一个线程,还是只启动固定的线程呢?.

通过以上分析,那么问题肯定是出现在线程池身上,那么我们默认使用的是什么线程池呢?查看CompletableFuture.runAsync()的源码可知,有一定的几率是ForkJoinPool。那么我们一起看下源码。

5、源码分析

源码分析

1、确认使用什么线程池

public static CompletableFuture<Void> runAsync(Runnable runnable) {
   return asyncRunStage(asyncPool, runnable);
}
private static final Executor asyncPool = useCommonPool ?
        ForkJoinPool.commonPool() : new ThreadPerTaskExecutor();

通过上述源码可知,我们可能使用的ForkJoin线程池,也可能使用的是ThreadPerTaskExecutor线程池。

  1. ThreadPerTaskExecutor 这个是每个任务,一个线程。
  2. ForkJoinPool 那么就需要确定启动了多少个线程。

2、确认是否使用 ForkJoin 线程池

需要确定 useCommonPool 字段是如何赋值的。

private static final boolean useCommonPool =
        (ForkJoinPool.getCommonPoolParallelism() > 1);

通过上面代码可知,是否使用ForkJoin线程池,是由 ForkJoinPool.getCommonPoolParallelism()的值确定的。(即并行度是否大于1,大于则使用ForkJoin线程池)

public static int getCommonPoolParallelism() {
    return commonParallelism;
}

3、commonParallelism 的赋值

commonParallelism 的赋值

1、从上图中可知parallelism的设置有2种方式

  • 通过Jvm的启动参数java.util.concurrent.ForkJoinPool.common.parallelism进行设置,且这个值最大为 MAX_CAP即32727。
  • 若没有通过Jvm的参数配置,则有2种情况,若cpu的核数<=1,则返回1,否则返回cpu的核数-1

2、commonParallelism的取值

common = java.security.AccessController.doPrivileged
            (new java.security.PrivilegedAction<ForkJoinPool>() {
                public ForkJoinPool run() { return makeCommonPool(); }});
int par = common.config & SMASK; // report 1 even if threads disabled
commonParallelism = par > 0 ? par : 1;

SMASK 的值是 65535。
common.config 的值就是 (parallelism & SMASK) | 0的值,即最大为65535,若parallelism的值为0,则返回0。
int par = common.config & SMASK ,即最大为 65535
commonParallelism = par > 0 ? par : 1 的值就为 parallelism的值或1

6、结论

结论

结论:
由上面的知识点,我们可以得出,当我们的容器是2核4G时,程序选择的线程池是ThreadPerTaskExecutor,当我们的容器是4核8G时,程序选择的线程池是ForkJoinPool

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,340评论 5 467
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,762评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,329评论 0 329
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,678评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,583评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,995评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,493评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,145评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,293评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,250评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,267评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,973评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,556评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,648评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,873评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,257评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,809评论 2 339

推荐阅读更多精彩内容