如何解决生信新手分析时常常遇到的数据问题

“高通量测序后续分析常见的数据格式”

前段时间我们推送了很多小工具教程;

点击上方“SangerBox工具使用讲解”获取更多工具讲解

从小伙伴们使用情况和私底下小伙伴反馈过来的情况来看,主要的问题是很多小伙伴刚刚入门生物信息,对现阶段分析所用到的数据格式不是很清楚。

今天小编就和大家聊一聊分析时常用的数据格式,干货满满,建议收藏与转发。

—  生信分析

其实生信分析分为标准分析、高级分析和个性化分析。

所谓的标准分析就是从最原始的fastq文件进过质控,过滤到低质量的数据,在mapping到人类参考基因组上,最后进行数据定量,转换得到表达矩阵的过程。

这个过程的技术特点由于测序原始数据比较大,单个文件往往在10G左右,大多数由服务器上完成,与高级分析、个性化分析也相比,所涉及到的软件和参数比较固定,对计算资源要求很高,部分数据对应TCGA上level1、level2的数据。对于我们生信初学者拿到的数据是表达定量之后的表达谱数据,可以进行高级分析和个性化分析,这两部分对分析者的技能和知识水平较高,同时分分析手段和方法也比较多,可以选择R语言、python、在线云平台以及图形化软件,就是所谓的“挖掘机技术哪家强”。

—  基础概念

Reads:字面可以翻译成“读段”,测序仪上测出的一小段DNA序列,是测序的最小单位。

Fragments:由于二代测序读长较短,例如:Illumina测序仪单段、端长度只有100bp或150bp,所以在测序之前将DNA或RNA打成小的片段,这些小的DNA片段就是fragments。测序结果可分为单端测序和双端测序,对于单端测序只能从fragments的一端测序,测出的reads数目与fragments数目相等;对于双端测序会测到fragments的两端,会得出两个reads,所以reads的数据是fragments数目的两倍。

测序深度:是指测序得到的碱基总量(bp)与物种基因组大小的比值,或者理解为基因组中每个碱基被测序到的频数。

测序覆盖度:是指测序得到的序列占整个基因组的比例。或者可以理解为基因组被测序到的碱基个数,占整个基因组的比例。

—  常见的数据格式

1. Count数据

----------

定义:高通量测序中比对到参考基因组中exon上的reads数,得到的基因表达矩阵是简单计数得来的,因此称作原始计数,也称Count矩阵。可以用作差异分析,常用的软件有edgeR和DEseq2

优点:能有效说明某个区域是否真的有表达和真实的表达丰度,能够近似呈现真实的表达情况,有利于实验验证。

缺点:因为exon长度不同,不同exon无法进行丰度比较;由于测序总数不同,难以对不同测序样本间进行比较。

2. FPKM/RPKM

----------

由于上面用count数据作为某个转录本的丰度,由于不同的exon长度不一样被测序到的次数也不一样,一般来说,exon的长度越长,产生的reads数据也就越多,相应的丰度也越高,不同样本上机批次不同,测序深度也会有所差异,所以需要将不同长度exon和测序深度不同的reads进行标准化,使数据的表达值在同一“起跑线”上。所以同行研究者们定义了FPKM/RPKM对数据进行标准化。

RPKM: Reads Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的reads),主要用来对单端测序(single-end RNA-seq)进行定量的方法;

total exon reads:某个样本mapping到特定基因的外显子上的所有的reads

mapped reads (Millions) :某个样本的所有reads总和

exon length(KB):某个基因的长度(外显子的长度的总和,以KB为单位)

FPKM: Fragments Per Kilobase of exon model per Million mapped fragments(每千个碱基的转录每百万映射读取的fragments),主要用来对双端测序(par-end RNA-seq)进行定量的方法;[1]。


FPKM和RPKM的原理是相似的,两者的区别在于,对于单末端测序数据,由于Cufflinks计算的时候是将一个read当做一个fragment来算的,故而FPKM等同于RPKM。对于双末端测序而言,如果一对paired-read都比对上了,那么这一对paired-read称之为一个fragment,而如果一对paired-Read中只有一个比对上了,另外一个没有比对上,那么就将这个比对上的read称之为一个fragment。而计算RPKM时,如果一对paired-read都比对上了会当成两个read计算,而如果一对paired-read中只有一个比对上了,另外一个没有比对上,那么就计read数为1。故而即使是理论上将各个参数都设置成一样的,也并不能说FPKM=2RPKM。

3. TPM

----------

定义:Transcripts Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的Transcripts)


Ni:比对到第i个exon的reads数

Li:第i个exon的长度

sum(N1/L1+N2/L2 + ... + Nn/Ln):所有 (n个)exon按长度进行标准化之后数值的和

4. 总结

----------

TPM、RPKM、FPKM三者的区别是计算次序不一样。TPM可以看作是RPKM/FPKM值的百分比。当计算TPM的时候,先对基因长度进行归一化,其次是测序深度的归一化。当使用TPM时候,每个样本的TPM总和是一样的。这使得比较同一个基因的reads数在不同样本间的比例变得容易。TPM实际上改进了RPKM/FPKM方法在跨样品间定量的不准确性。FPKM和RPKM与此相反,每个样本的FPKM或RPKM的累加和可以不一样,造成样本间不能直接比较FPKM或RPKM值。

参考文献

Wagner, G.P., Kin, K. & Lynch, V.J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,265评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,078评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,852评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,408评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,445评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,772评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,921评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,688评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,130评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,467评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,617评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,276评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,882评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,740评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,967评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,315评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,486评论 2 348