SimHash

1.采用Hanlp分词,再计算SimHash值,及Hamming距离。
2.SimHash适用于较长文本(大于三五百字)的相似性比较,文本越短,以3位阈值的误判率越高。
3.鸽巢原理将64位哈希值分为四组,形成四个整数。比较两个哈希值时,先比较各自形成的四个整数,如果这四个整数都不相等,就不用再计算Hamming距离了,因为它们的Hamming距离肯定大于3。由此来减少大样本比较时,相互间Hamming距离的计算量。

package com.mingdutech.ai.similarityCompare;

import java.io.IOException;
import java.io.StringReader;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

import com.hankcs.hanlp.seg.common.Term;
import com.hankcs.hanlp.tokenizer.StandardTokenizer;

import static com.mingdutech.ai.nlpSeg.Seg.readStopwords;
//import org.wltea.analyzer.IKSegmentation;
//import org.wltea.analyzer.Lexeme;

public class SimHash {
    /**
     * Function: simHash 判断文本相似度,该示例程支持中文<br/>
     * date: 2013-8-6 上午1:11:48 <br/>
     *
     * @author june
     * @version 0.1
     */


    private String tokens;

    private BigInteger intSimHash;

    private String strSimHash;

    private int hashbits = 64;

    public SimHash(String tokens) throws IOException {
        this.tokens = tokens;
        this.intSimHash = this.simHash();
    }

    public SimHash(String tokens, int hashbits) throws IOException {
        this.tokens = tokens;
        this.hashbits = hashbits;
        this.intSimHash = this.simHash();
    }

    HashMap<String, Integer> wordMap = new HashMap<String, Integer>();

    public BigInteger simHash() throws IOException {
        // 定义特征向量/数组
        int[] v = new int[this.hashbits];
        // 英文分词
        // StringTokenizer stringTokens = new StringTokenizer(this.tokens);
        // while (stringTokens.hasMoreTokens()) {
        // String temp = stringTokens.nextToken();
        // }
        //分词,采用Hanlp
        List<Term> termList = StandardTokenizer.segment(this.tokens);
        List<String> wordList = new ArrayList<String>();
        for (Term t : termList) {
            wordList.add(t.word);
        }
        //读取要去除的停用词,并去除停用词
        List<String> stopwords = new ArrayList<String>();
        String stopwordsPath = "D:\\ai\\src\\main\\resources\\stopwords-master\\哈工大停用词表.txt";
        stopwords = readStopwords(stopwordsPath);
        wordList.removeAll(stopwords);

        //hash
        for (String s:wordList){
            //将每一个分词hash为一组固定长度的数列.比如 64bit 的一个整数.
            BigInteger t = this.hash(s);
            for (int i = 0; i < this.hashbits; i++) {
                BigInteger bitmask = new BigInteger("1").shiftLeft(i);
                // 建立一个长度为64的整数数组(假设要生成64位的数字指纹,也可以是其它数字),
                // 对每一个分词hash后的数列进行判断,如果是1000...1,那么数组的第一位和末尾一位加1,
                // 中间的62位减一,也就是说,逢1加1,逢0减1.一直到把所有的分词hash数列全部判断完毕.
                if (t.and(bitmask).signum() != 0) {
                    // 这里是计算整个文档的所有特征的向量和
                    // 这里实际使用中需要 +- 权重,比如词频,而不是简单的 +1/-1,
                    v[i] += 1;
                } else {
                    v[i] -= 1;
                }
            }
        }

        BigInteger fingerprint = new BigInteger("0");
        StringBuffer simHashBuffer = new StringBuffer();
        for (int i = 0; i < this.hashbits; i++) {
            // 最后对数组进行判断,大于0的记为1,小于等于0的记为0,得到一个 64bit 的数字指纹/签名.
            if (v[i] >= 0) {
                fingerprint = fingerprint.add(new BigInteger("1").shiftLeft(i));
                simHashBuffer.append("1");
            } else {
                simHashBuffer.append("0");
            }
        }
        this.strSimHash = simHashBuffer.toString();
        System.out.println(this.strSimHash + " length " + this.strSimHash.length());
        return fingerprint;
    }

    private BigInteger hash(String source) {
        if (source == null || source.length() == 0) {
            return new BigInteger("0");
        } else {
            char[] sourceArray = source.toCharArray();
            BigInteger x = BigInteger.valueOf(((long) sourceArray[0]) << 7);
            BigInteger m = new BigInteger("1000003");
            BigInteger mask = new BigInteger("2").pow(this.hashbits).subtract(new BigInteger("1"));
            for (char item : sourceArray) {
                BigInteger temp = BigInteger.valueOf((long) item);
                x = x.multiply(m).xor(temp).and(mask);
            }
            x = x.xor(new BigInteger(String.valueOf(source.length())));
            if (x.equals(new BigInteger("-1"))) {
                x = new BigInteger("-2");
            }
            return x;
        }
    }

    public int hammingDistance(SimHash other) {

        BigInteger x = this.intSimHash.xor(other.intSimHash);
        int tot = 0;

        // 统计x中二进制位数为1的个数
        // 我们想想,一个二进制数减去1,那么,从最后那个1(包括那个1)后面的数字全都反了,
        // 对吧,然后,n&(n-1)就相当于把后面的数字清0,
        // 我们看n能做多少次这样的操作就OK了。

        while (x.signum() != 0) {
            tot += 1;
            x = x.and(x.subtract(new BigInteger("1")));
        }
        return tot;
    }

    public int getDistance(String str1, String str2) {
        int distance;
        if (str1.length() != str2.length()) {
            distance = -1;
        } else {
            distance = 0;
            for (int i = 0; i < str1.length(); i++) {
                if (str1.charAt(i) != str2.charAt(i)) {
                    distance++;
                }
            }
        }
        return distance;
    }

    public List subByDistance(SimHash simHash, int distance) {
        // 分成几组来检查
        int numEach = this.hashbits / (distance + 1);
        List characters = new ArrayList();

        StringBuffer buffer = new StringBuffer();

        int k = 0;
        //for (int i = 0; i < this.intSimHash.bitLength(); i++) {
        for (int i = 0; i < this.hashbits; i++) {
            // 当且仅当设置了指定的位时,返回 true
            boolean sr = simHash.intSimHash.testBit(i);

            if (sr) {
                buffer.append("1");
            } else {
                buffer.append("0");
            }

            if ((i + 1) % numEach == 0) {
                // 将二进制转为BigInteger
                BigInteger eachValue = new BigInteger(buffer.toString(), 2);
                System.out.println("----" + eachValue);
                buffer.delete(0, buffer.length());
                characters.add(eachValue);
            }
        }

        return characters;
    }

    public static void main(String[] args) throws IOException {
        String s = "传统的 hash 算法只负责将原始内容尽量均匀随机地映射为一个签名值,"
                + "原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概 率 下是相等的;"
                + "如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,"
                + "所产生的签名也很可能差别极大。从这个意义 上来 说,要设计一个 hash 算法,"
                + "对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,"
                + "还能额外提供不相等的 原始内容的差异程度的信息。";
       s="加上几个干扰试试<在设计时,应该考虑到系统在调试时的方便性,比如可以考虑在数据流处理过程中每一个环节的开始和结束的位置放置一个回调";
        s="我上北京天安门";
        SimHash hash1 = new SimHash(s, 64);
        System.out.println(hash1.intSimHash + "  " + hash1.intSimHash.bitLength());
        // 计算 海明距离 在 3 以内的各块签名的 hash 值
        hash1.subByDistance(hash1, 3);

        // 删除首句话,并加入两个干扰串
        s = "原理上相当于伪随机数产生算法。产生的两个签名,如果相等,说明原始内容在一定概 率 下是相等的;"
                + "如果不相等,除了说明原始内容不相等外,不再提供任何信息,因为即使原始内容只相差一个字节,"
                + "所产生的签名也很可能差别极大。从这个意义 上来 说,要设计一个 hash 算法,"
                + "对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,"
                + "干扰1还能额外提供不相等的 原始内容的差异程度的信息。";

        s = "加几个干扰<在设计时,应该考虑到系统在调试时的方便性,比如可以考虑在数据流处理过程中每一个环节的开始和结束的位置放置一个回调";
        s="我爱北京天安门";
        SimHash hash2 = new SimHash(s, 64);
        System.out.println(hash2.intSimHash + "  " + hash2.intSimHash.bitCount());
        hash1.subByDistance(hash2, 3);

        // 首句前添加一句话,并加入四个干扰串
        s = "imhash算法的输入是一个向量,输出是一个 f 位的签名值。为了陈述方便,"
                + "假设输入的是一个文档的特征集合,每个特征有一定的权重。"
                + "传统干扰4的 hash 算法只负责将原始内容尽量均匀随机地映射为一个签名值,"
                + "对相似的内容产生的签名也相近,是更为艰难的任务,因为它的签名值除了提供原始内容是否相等的信息外,"
                + "还能额外提供不相等的 原始内容的差异程度的信息。";

        s = "Application Server需要通过实现OPC接口向外暴露数据;\n" +
                "LogServer需要对外提供SQL查询接口\n" +
                "对于一些大家熟知的接口,可以简单列举出接口名称即可,如果是自定义的接口,则应该在此处详细地写明接口的规格。\n" +
                "接口,是一组相关方法的组合。在接口的规格说明中,要说明接口中各个方法的顺序、名称、参数、返回值类型等;对于每个参数,也应该说明其类型、名称、含义以及是输入还是输出等。对于每个接口,都应该按如下格式描述:";

        SimHash hash3 = new SimHash(s, 64);
        System.out.println(hash3.intSimHash + "  " + hash3.intSimHash.bitCount());
        hash1.subByDistance(hash3, 3);

        System.out.println("============================");

        int dis = hash1.getDistance(hash1.strSimHash, hash2.strSimHash);
        System.out.println(hash1.hammingDistance(hash2) + " " + dis);
        // 根据鸽巢原理(也成抽屉原理,见组合数学),如果两个签名的海明距离在 3 以内,它们必有一块签名subByDistance()完全相同。
        int dis2 = hash1.getDistance(hash1.strSimHash, hash3.strSimHash);
        System.out.println(hash1.hammingDistance(hash3) + " " + dis2);

        int dis3 = hash1.getDistance(hash2.strSimHash, hash3.strSimHash);
        System.out.println(hash2.hammingDistance(hash3) + " " + dis3);
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354

推荐阅读更多精彩内容