Hadoop离线数据分析平台实战——380MapReduce程序优化

Hadoop离线数据分析平台实战——380MapReduce程序优化

项目进度

模块名称 完成情况
用户基本信息分析(MR)� 完成
浏览器信息分析(MR) 完成
地域信息分析(MR) 完成
外链信息分析(MR) 完成
用户浏览深度分析(Hive) 未完成
订单分析(Hive) 未完成
事件分析(Hive) 未完成

调优的目的

充分的利用机器的性能,更快的完成mr程序的计算任务。
甚至是在有限的机器条件下,能够支持运行足够多的mr程序。
说的直接一点就是:调优就是使有限的机器集群完成足够多的任务job,
只有当实在是缺少机器的情况下,才会再向集群中添加机器,扩充集群。

调优的总体概述

从mr程序的内部运行机制,我们可以了解到一个mr程序由mapper和reducer两个阶段组成,
其中mapper阶段包括数据的读取、map处理以及写出操作(排序和合并/sort&merge),
而reducer阶段包含mapper数据的获取、数据合并(sort&merge)、reduce处理以及写出操作。
那么在这七个子阶段中,能够进行较大力度的进行调优的就是map输出、reducer数据合并以及reducer个数这三个方面的调优操作。
也就是说虽然性能调优包括cpu、内存、磁盘io以及网络这四个大方面,但是从mr程序的执行流程中,我们可以知道主要有调优的是内存、磁盘io以及网络。
在mr程序中调优,主要考虑的就是减少网络传输和减少磁盘IO操作,故本次课程的mr调优主要包括服务器调优、代码调优、mapper调优、reducer调优以及runner调优这五个方面。

服务器调优

服务器调优主要包括服务器参数调优和jvm调优。
在本次项目中,由于我们使用hbase作为我们分析数据的原始数据存储表,所以对于hbase我们也需要进行一些调优操作。
除了参数调优之外,和其他一般的java程序一样,还需要进行一些jvm调优。
服务器调优主要包括hdfs参数调整、hbase参数调整、mapreduce参数调整。

详见..\文档\mapreduce调优.txt

代码调优

代码调优,主要是在mapper和reducer类中,针对多次创建的对象,进行代码提出操作,优化代码结构。
这个和一般的java程序的代码调优一样。
代码调优主要就是java程序的一般调优方式。

详见..\文档\mapreduce调优.txt

mapper调优

mapper阶段包括三部分,即:输入(InputFormat)、处理和输出。
一般情况下,对于输入操作不进行任何的优化操作,对于处理部分采用代码优化即可,
重点是对应输出部分进行优化,减少输出量,降低网络传输量和磁盘溢出(IO)操作。
mapper调优主要就是就一个目标:减少输出量。
我们可以通过增加combine阶段以及对输出进行压缩设置进行mapper调优。

详见..\文档\mapreduce调优.txt以及runner调优部分介绍(会指定参数)。

reducer调优

reducer调优主要可以通过两部分进行调优设置,
第一是设置reducer的个数来进行调优设置,
第二部分是根据数据量的多少进行内存设置,减少磁盘溢出操作。
其中简单方便有效的就是设计reducer的个数。

详见..\文档\mapreduce调优.txt

runner调优

runner调优其实就是在提交job的时候设置job参数,一般都可以通过代码和xml文件两种方式进行设置。
其实runner调优就包含了mapper调优和reducer调优,也就是说需要在runner提交的job中携带对应的参数。

详见..\文档\mapreduce调优.txt

注意:hbase客户端调优只涉及到一个cache的操作,详见代码TransformerBaseRunner的initScans方法


一、调优的目的

充分的利用机器的性能,更快的完成mr程序的计算任务。甚至是在有限的机器条件下,能够支持运行足够多的mr程序。

二、调优的总体概述

从mr程序的内部运行机制,我们可以了解到一个mr程序由mapper和reducer两个阶段组成,其中mapper阶段包括数据的读取、map处理以及写出操作(排序和合并/sort&merge),而reducer阶段包含mapper输出数据的获取、数据合并(sort&merge)、reduce处理以及写出操作。那么在这七个子阶段中,能够进行较大力度的进行调优的就是map输出、reducer数据合并以及reducer个数这三个方面的调优操作。也就是说虽然性能调优包括cpu、内存、磁盘io以及网络这四个大方面,但是从mr程序的执行流程中,我们可以知道主要有调优的是内存、磁盘io以及网络。在mr程序中调优,主要考虑的就是减少网络传输和减少磁盘IO操作,故本次课程的mr调优主要包括服务器调优、代码调优、mapper调优、reducer调优以及runner调优这五个方面。

三、服务器调优

服务器调优主要包括服务器参数调优和jvm调优。在本次项目中,由于我们使用hbase作为我们分析数据的原始数据存储表,所以对于hbase我们也需要进行一些调优操作。除了参数调优之外,和其他一般的java程序一样,还需要进行一些jvm调优。
hdfs调优
1. dfs.datanode.failed.volumes.tolerated: 允许发生磁盘错误的磁盘数量,默认为0,表示不允许datanode发生磁盘异常。当挂载多个磁盘的时候,可以修改该值。
2. dfs.replication: 复制因子,默认3
3. dfs.namenode.handler.count: namenode节点并发线程量,默认10
4. dfs.datanode.handler.count:datanode之间的并发线程量,默认10。
5. dfs.datanode.max.transfer.threads:datanode提供的数据流操作的并发线程量,默认4096。
    一般将其设置为linux系统的文件句柄数的85%~90%之间,查看文件句柄数语句ulimit -a,修改vim /etc/security/limits.conf, 添加* soft nofile 262144 & * hard nofile 262144
        注意:句柄数不能够太大,可以设置为1000000以下的所有数值,一般不设置为-1。
        异常处理:当设置句柄数较大的时候,重新登录可能出现unable load session的提示信息,这个时候采用单用户模式进行修改操作即可。
            单用户模式:
                启动的时候按'a'键,进入选择界面,然后按'e'键进入kernel修改界面,然后选择第二行'kernel...',按'e'键进行修改,在最后添加空格+single即可,按回车键回到修改界面,最后按'b'键进行单用户模式启动,当启动成功后,还原文件后保存,最后退出(exit)重启系统即可。
6. io.file.buffer.size: 读取/写出数据的buffer大小,默认4096,一般不用设置,推荐设置为4096的整数倍(物理页面的整数倍大小)。
hbase调优
1. 设置regionserver的内存大小,默认为1g,推荐设置为4g。
    修改conf/hbase-env.sh中的HBASE_HEAPSIZE=4g
2. hbase.regionserver.handler.count: 修改客户端并发线程数,默认为10。设置规则为,当put和scans操作比较的多的时候,将其设置为比较小的值;当get和delete操作比较多的时候,将其设置为比较大的值。原因是防止频繁GC操作导致内存异常。
3. 自定义hbase的分割和紧缩操作,默认情况下hbase的分割机制是当region大小达到hbase.hregion.max.filesize(10g)的时候进行自动分割,推荐每个regionserver的region个数在20~500个为最佳。hbase的紧缩机制是hbase的一个非常重要的管理机制,hbase的紧缩操作是非常消耗内存和cpu的,所以一般机器压力比较大的话,推荐将其关闭,改为手动控制。
4. hbase.balancer.period: 设置hbase的负载均衡时间,默认为300000(5分钟),在负载比较高的集群上,将其值可以适当的改大。
5. hfile.block.cache.size:修改hflie文件块在内存的占比,默认0.4。在读应用比较多的系统中,可以适当的增大该值,在写应用比较多的系统中,可以适当的减少该值,不过不推荐修改为0。
6. hbase.regionserver.global.memstore.upperLimit:修改memstore的内存占用比率上限,默认0.4,当达到该值的时候,会进行flush操作将内容写的磁盘中。
7. hbase.regionserver.global.memstore.lowerLimit: 修改memstore的内存占用比率下限,默认0.38,进行flush操作后,memstore占用的内存比率必须不大于该值。
8. hbase.hregion.memstore.flush.size: 当memstore的值大于该值的时候,进行flush操作。默认134217728(128M)。
9. hbase.hregion.memstore.block.multiplier: 修改memstore阻塞块大小比率值,默认为4。也就是说在memstore的大小超过4*hbase.hregion.memstore.flush.size的时候就会触发写阻塞操作。最终可能会导致出现oom异常。
mapreduce调优
1. mapreduce.task.io.sort.factor: mr程序进行合并排序的时候,打开的文件数量,默认为10个.
2. mapreduce.task.io.sort.mb: mr程序进行合并排序操作的时候或者mapper写数据的时候,内存大小,默认100M
3. mapreduce.map.sort.spill.percent: mr程序进行flush操作的阀值,默认0.80。
4. mapreduce.reduce.shuffle.parallelcopies:mr程序reducer copy数据的线程数,默认5。
5. mapreduce.reduce.shuffle.input.buffer.percent: reduce复制map数据的时候指定的内存堆大小百分比,默认为0.70,适当的增加该值可以减少map数据的磁盘溢出,能够提高系统性能。
6. mapreduce.reduce.shuffle.merge.percent:reduce进行shuffle的时候,用于启动合并输出和磁盘溢写的过程的阀值,默认为0.66。如果允许,适当增大其比例能够减少磁盘溢写次数,提高系统性能。同mapreduce.reduce.shuffle.input.buffer.percent一起使用。
7. mapreduce.task.timeout:mr程序的task执行情况汇报过期时间,默认600000(10分钟),设置为0表示不进行该值的判断。

四、代码调优

代码调优,主要是mapper和reducer中,针对多次创建的对象,进行代码提出操作。这个和一般的java程序的代码调优一样。

五、mapper调优

mapper调优主要就是就一个目标:减少输出量。我们可以通过增加combine阶段以及对输出进行压缩设置进行mapper调优。
combine介绍:
    实现自定义combine要求继承reducer类,特点:
    以map的输出key/value键值对作为输入输出键值对,作用是减少网络输出,在map节点上就合并一部分数据。
    比较适合,map的输出是数值型的,方便进行统计。
压缩设置:
    在提交job的时候分别设置启动压缩和指定压缩方式。

六、reducer调优

reducer调优主要是通过参数调优和设置reducer的个数来完成。
reducer个数调优:
    要求:一个reducer和多个reducer的执行结果一致,不能因为多个reducer导致执行结果异常。
    规则:一般要求在hadoop集群中的执行mr程序,map执行完成100%后,尽量早的看到reducer执行到33%,可以通过命令hadoop job -status job_id或者web页面来查看。
        原因: map的执行process数是通过inputformat返回recordread来定义的;而reducer是有三部分构成的,分别为读取mapper输出数据、合并所有输出数据以及reduce处理,其中第一步要依赖map的执行,所以在数据量比较大的情况下,一个reducer无法满足性能要求的情况下,我们可以通过调高reducer的个数来解决该问题。
    优点:充分利用集群的优势。
    缺点:有些mr程序没法利用多reducer的优点,比如获取top n的mr程序。

七、runner调优

runner调优其实就是在提交job的时候设置job参数,一般都可以通过代码和xml文件两种方式进行设置。
1~8详见ActiveUserRunner(before和configure方法),9详解TransformerBaseRunner(initScans方法)

1. mapred.child.java.opts: 修改childyard进程执行的jvm参数,针对map和reducer均有效,默认:-Xmx200m
2. mapreduce.map.java.opts: 需改map阶段的childyard进程执行jvm参数,默认为空,当为空的时候,使用mapred.child.java.opts。
3. mapreduce.reduce.java.opts:修改reducer阶段的childyard进程执行jvm参数,默认为空,当为空的时候,使用mapred.child.java.opts。
4. mapreduce.job.reduces: 修改reducer的个数,默认为1。可以通过job.setNumReduceTasks方法来进行更改。
5. mapreduce.map.speculative:是否启动map阶段的推测执行,默认为true。其实一般情况设置为false比较好。可通过方法job.setMapSpeculativeExecution来设置。
6. mapreduce.reduce.speculative:是否需要启动reduce阶段的推测执行,默认为true,其实一般情况设置为fase比较好。可通过方法job.setReduceSpeculativeExecution来设置。
7. mapreduce.map.output.compress:设置是否启动map输出的压缩机制,默认为false。在需要减少网络传输的时候,可以设置为true。
8. mapreduce.map.output.compress.codec:设置map输出压缩机制,默认为org.apache.hadoop.io.compress.DefaultCodec,推荐使用SnappyCodec(在之前版本中需要进行安装操作,现在版本不太清楚,安装参数:http://www.cnblogs.com/chengxin1982/p/3862309.html)
9. hbase参数设置
    由于hbase默认是一条一条数据拿取的,在mapper节点上执行的时候是每处理一条数据后就从hbase中获取下一条数据,通过设置cache值可以一次获取多条数据,减少网络数据传输。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 210,914评论 6 490
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 89,935评论 2 383
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,531评论 0 345
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,309评论 1 282
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,381评论 5 384
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,730评论 1 289
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,882评论 3 404
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,643评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,095评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,448评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,566评论 1 339
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,253评论 4 328
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,829评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,715评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,945评论 1 264
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,248评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,440评论 2 348

推荐阅读更多精彩内容