from numpy import *
def compute_error_for_given_points(b, m, points):
totalError = 0
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
totalError += (y - (m * x + b)) ** 2
return totalError / float(len(points))
def step_gradient(b_current, m_current, points, learning_rate):
# Gradient descent
b_gradient = 0
m_gradient = 0
N = float(len(points))
for i in range(0, len(points)):
x = points[i, 0]
y = points[i, 1]
b_gradient += -(2 / N) * (y - ((m_current * x) + b_current))
m_gradient += -(2 / N) * x * (y - ((m_current * x) + b_current))
new_b = b_current - (learning_rate * b_gradient)
new_m = m_current - (learning_rate * m_gradient)
return [new_b, new_m]
def gradient_descent_runner(points, starting_b, starting_m, learning_rate, num_iterations):
b = starting_b
m = starting_m
for i in range(num_iterations):
b, m = step_gradient(b, m, array(points), learning_rate)
return [b, m]
def run():
points = genfromtxt('data.csv', delimiter=',')
# Hyper parameters
learning_rate = 0.0001
# y = mx + b (slope formula)
initial_b = 0
initial_m = 0
num_iterations = 1000
[b, m] = gradient_descent_runner(points, initial_b, initial_m, learning_rate, num_iterations)
print(b)
print(m)
if __name__ == 'main':
run()
深度学习笔记 - 103 - Gradient Descent in Linear Regression
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 循环神经网络。https://github.com/aymericdamien/TensorFlow-Exampl...
- On-the-Fly Learning in a Perpetual Learning Machine Andre...