数据库中间件的研究

阿里云教程 :https://www.aliyun.com/jiaocheng/774911.html

摘要:关系型数据库在大于一定数据量的情况下性能会急剧下降。在面对互联网海量数据的情况时,所有数据都存于一张表,显然很容易会达到数据表可承受的数据量阈值。单纯分表虽然可以解决数据量过大导致检索变慢的问题,但无法解决高并发情况下访问同一个库,导致数据库响应变慢的问题。所以通常水平拆分都至少要采用分库的方式,以一并解决大数据量&;高并发的问题。但分表也有不可替代的......

最近入手一个项目,数据量:每15分钟产生4-5万条记录要求记录保留一个月。平均每天产生384万条数据记录,每个月数据记录已经过亿。如此大的数据量,明显超过了MySQL单表的承载能力,如果不提前规划好,那么随着数据量的积累,访问数据库将越来越慢。

本项目的主要特征就是大数据量,高并发还涉及不到,但是为了一次性解决问题,还是将高并发的需求一并纳入进来。

如何应对?

方法一、分库分表

分库分表用于应对当前互联网常见的两个场景:大数据量 &; 高并发。通常分为:垂直拆分 &; 水平拆分。 垂直拆分是根据业务将一个库(表)拆分为多个库(表)。如:将经常和不经常访问的字段拆分至不同的库(表)中,与业务关系密切。 水平拆分是根据分片算法将一个库(表)拆分为多个库(表)。

方法二、Sharding-JDBC  使用现有的框架

Sharding-JDBC是当当应用框架ddframe中,从关系型数据库模块dd-rdb中分离出来的数据库水平分片框架,是继dubbox、elastic-job之后ddframe开源的第三个项目。

Sharding-JDBC直接分装jdbc协议,可理解为增强版的JDBC驱动,旧代码迁移成本几乎为零,定位为轻量级java框架,使用客户端直连数据库,以jar包形式提供服务,无proxy层。

主要包括以下特点:

可适用于任何基于java的ORM框架,如:JPA、Hibernate、Mybatis、Spring JDBC Template,或直接使用JDBC

可基于任何第三方的数据库连接池,如:DBCP、C3P0、Durid等

理论上可支持任意实现JDBC规范的数据库。目前仅支持mysql

分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。

SQL解析功能完善,支持聚合、分组、排序、limit、or等查询,并支持Binding Table以及笛卡尔积表查询。

性能高,单库查询QPS为原生JDBC的99.8%,双库查询QPS比单库增加94%。

架构


Sharding-JDBC核心原理

核心概念

LogicTable:数据分片的逻辑表,对于水平拆分的数据库(表)来说,是同一类表的总称。如:订单数据根据主键尾数拆分为10张表,分表是t order0到t order 9,他们的逻辑表名为t_order。

ActualTable:分片数据中真实存在的物理表。

DataNode:数据分片的最小单元,由数据源名称和数据表组成。如:ds 1.t order_0。

DynamicTable:逻辑表和物理表不一定需要在配置规则中静态配置。如,按照日期分片的场景,物理表的名称随着时间的推移会产生变化。

BindingTable:指在任何场景下分片规则均一致的主表和子表。例:订单表和订单项表,均按照订单ID分片,则此两张表互为BindingTable关系。BindingTable关系的多表关联查询不会出现笛卡尔积关联,查询效率将大大提升。

ShardingColumn:分片字段用于将数据库(表)水平拆分的字段。

ShardingAlgorithm:分片算法。

SQL Hint:对于分片字段非SQL决定,而由其他外置条件决定的场景,可使用SQL Hint灵活的注入分片字段。

数据源分布规则配置



逻辑表&;物理表映射

TableRule orderTableRule =TableRule.builder("order").actualTables(Arrays.asList("t_order_0", "t_order_1")).dataSourceRule(dataSourceRule).build();

分片策略配置

Sharding-jdbc认为对于分片策略有两种维度:

数据源分片策略(DatabaseShardingStrategy) 数据被分配的目标数据源。

表分片策略(TableShardingStrategy) 数据被分配的目标表,该目标表在该数据对应的目标数据源内。

DatabaseShardingStrategy databaseShardingStrategy = new DatabaseShardingStrategy("user_id", new ModuloDatabaseShardingAlgorithm());

TableShardingStrategy tableShardingStrategy = new TableShardingStrategy("order_id", new ModuloTableShardingAlgorithm());

ShardingRule shardingRule = ShardingRule.builder()

.dataSourceRule(dataSourceRule)

.tableRules(Arrays.asList(orderTableRule, orderItemTableRule))

.databaseShardingStrategy(databaseShardingStrategy)

.tableShardingStrategy(tableShardingStrategy)

.build();

ShardingDataSource

DataSource shardingDataSource = ShardingDataSourceFactory.createDataSource(shardingRule);

JDBC规范重写

针对DataSource、Connection、Statement、PreparedStatement和ResultSet五个核心接口封装。

DataSource:ShardingDataSource

Connetion:ShardingConnection ShardingConnection是一种逻辑上的分布式数据库链接,成员变量ShardingContext,即数据源运行的上下文信息。

ShardingContext包括:ShardingRule:分片规则;ExecutorEngine:执行引擎,通过多线程的方式并行执行SQL。

Statement:ShardingStatement

PreparedStatement:ShardingPreparedStatement

ResultSet:ShardingResultSet

SQL解析


常见的SQL解析主要有:fdb/jsqlparser、Druid;sharding-jdbc 1.5.0.M1将SQL解析引擎从Druid换成了自研的解析引擎。 Sharding-jdbc支持join、aggregation、order by、group by、limit、or;目前不支持union、部分子查询、函数内分片等不太应在分片场景中出现的SQL解析。

SQL解析引擎在sharding-jdbc-core模块下com.dangdang.ddframe.rdb.sharding.parsing包下,包含两个组件:


SQL解析引擎的位置

项目参考博客:

https://blog.csdn.net/l1028386804/article/details/79368021

https://blog.csdn.net/u012394095/article/details/81705382

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容