一.AdaBoost的算法
在学习adaboost算法前先要弄清楚前向分布算法,因为AdaBoost是前向分布加法算法的特例,这时,模型是由基本分类器组成的加法模型,损失函数是指数函数。
前向分布算法的原理为:
Adaboost算法原理为:
二.GBDT算法
说到GBDT首先要回顾一下提升树模型,可参考下面链接:
提升树模型采用加法模型(基函数的线性组合)与前向分步算法,同时基函数采用决策树算法,对待分类问题采用二叉分类树,对于二分类问题,提升树算法只需将AdaBoost算法中的基本分类器限制为二分类树即可,对于回归问题采用二叉回归树。提升树模型可以看作是决策树的加法模型。当损失函数是平方损失和指数损失函数时,每一步的优化都是很简单的。但对于一般损失函数而言,往往每一步优化并不那么容易。针对这一问题,提出了梯度提升算法,其关键是利用损失函数的负梯度在当前模型的值作为回归问题提升树算法中的残差的近似值,拟合一个回归树。
以下分为三点来学习GBDT。
三.xgboost算法
既然xgboost就是一个监督模型,那么我们的第一个问题就是:xgboost对应的模型是什么?
答案就是一堆CART树。
此时,可能我们又有疑问了,CART树是什么?这个问题请查阅其他资料,我的博客中也有相关文章涉及过。然后,一堆树如何做预测呢?答案非常简单,就是将每棵树的预测值加到一起作为最终的预测值,可谓简单粗暴。
下图就是CART树和一堆CART树的示例,用来判断一个人是否会喜欢计算机游戏:
第二图的底部说明了如何用一堆CART树做预测,就是简单将各个树的预测分数相加。
xgboost为什么使用CART树而不是用普通的决策树呢?
简单讲,对于分类问题,由于CART树的叶子节点对应的值是一个实际的分数,而非一个确定的类别,这将有利于实现高效的优化算法。xgboost出名的原因一是准,二是快,之所以快,其中就有选用CART树的一份功劳。
知道了xgboost的模型,我们需要用数学来准确地表示这个模型,如下所示:
这里的K就是树的棵数,F表示所有可能的CART树,f表示一棵具体的CART树。这个模型由K棵CART树组成。模型表示出来后,我们自然而然就想问,这个模型的参数是什么?因为我们知道,“知识”蕴含在参数之中。第二,用来优化这些参数的目标函数又是什么?
我们先来看第二个问题,模型的目标函数,如下所示:
这个目标函数同样包含两部分,第一部分就是损失函数,第二部分就是正则项,这里的正则化项由K棵树的正则化项相加而来,你可能会好奇,一棵树的正则化项是什么?可暂时保持住你的好奇心,后面会有答案。现在看来,它们都还比较抽象,不要着急,后面会逐一将它们具体化。
训练xgboost
上面,我们获取了xgboost模型和它的目标函数,那么训练的任务就是通过最小化目标函数来找到最佳的参数组。
问题是参数在哪里?
我们很自然地想到,xgboost模型由CART树组成,参数自然存在于每棵CART树之中。那么,就单一的 CART树而言,它的参数是什么呢?
根据上面对CART树的介绍,我们知道,确定一棵CART树需要确定两部分,第一部分就是树的结构,这个结构负责将一个样本映射到一个确定的叶子节点上,其本质上就是一个函数。第二部分就是各个叶子节点上的分数。
似乎遇到麻烦了,你要说叶子节点的分数作为参数,还是没问题的,但树的结构如何作为参数呢?而且我们还不是一棵树,而是K棵树!
让我们想像一下,如果K棵树的结构都已经确定,那么整个模型剩下的就是所有K棵树的叶子节点的值,模型的正则化项也可以设为各个叶子节点的值的平方和。此时,整个目标函数其实就是一个K棵树的所有叶子节点的值的函数,我们就可以使用梯度下降或者随机梯度下降来优化目标函数。现在这个办法不灵了,必须另外寻找办法。
加法训练
所谓加法训练,本质上是一个元算法,适用于所有的加法模型,它是一种启发式算法。关于这个算法,我的另一篇讲GBDT的文章中有详细的介绍,这里不再重复,不熟悉的朋友,可以看一下。运用加法训练,我们的目标不再是直接优化整个目标函数,这已经被我们证明是行不通的。而是分步骤优化目标函数,首先优化第一棵树,完了之后再优化第二棵树,直至优化完K棵树。整个过程如下图所示:
在第t步时,我们添加了一棵最优的CART树f_t,这棵最优的CART树f_t是怎么得来的呢?非常简单,就是在现有的t-1棵树的基础上,使得目标函数最小的那棵CART树,如下图所示:
上图中的constant就是前t-1棵树的复杂度,再忍耐一会儿,我们就会知道如何衡量树的复杂度了,暂时忽略它。
假如我们使用的损失函数时MSE,那么上述表达式会变成这个样子:
这个式子非常漂亮,因为它含有f_t(x_i)的一次式和二次式,而且一次式项的系数是残差。你可能好奇,为什么有一次式和二次式就漂亮,因为它会对我们后续的优化提供很多方便,继续前进你就明白了。
注意:f_t(x_i)是什么?它其实就是f_t的某个叶子节点的值。之前我们提到过,叶子节点的值是可以作为模型的参数的。
但是对于其他的损失函数,我们未必能得出如此漂亮的式子,所以,对于一般的损失函数,我们需要将其作泰勒二阶展开,展开过程为:
结果为:
其中:
这里有必要再明确一下,gi和hi的含义。gi怎么理解呢?现有t-1棵树是不是?这t-1棵树组成的模型对第i个训练样本有一个预测值y^i是不是?这个y^i与第i个样本的真实标签yi肯定有差距是不是?这个差距可以用l(yi,y^i)这个损失函数来衡量是不是?现在gi和hi的含义你已经清楚了是不是?
如果你还是觉得抽象,我们来看一个具体的例子,假设我们正在优化第11棵CART树,也就是说前10棵 CART树已经确定了。这10棵树对样本(x_i,y_i=1)的预测值是y^i=-1,假设我们现在是做分类,我们的损失函数是
在y_i=1时,损失函数变成了
我们可以求出这个损失函数对于y^i的梯度,如下所示:
将y^i =-1代入上面的式子,计算得到-0.27。这个-0.27就是g_i。该值是负的,也就是说,如果我们想要减小这10棵树在该样本点上的预测损失,我们应该沿着梯度的反方向去走,也就是要增大y^i 的值,使其趋向于正,因为我们的y_i=1就是正的。
来,答一个小问题,在优化第t棵树时,有多少个gi和hi要计算?嗯,没错就是各有N个,N是训练样本的数量。如果有10万样本,在优化第t棵树时,就需要计算出个10万个gi和hi。感觉好像很麻烦是不是?但是你再想一想,这10万个gi之间是不是没有啥关系?是不是可以并行计算呢?聪明的你想必再一次感受到了,为什么xgboost会辣么快!(因为不同样本的g和h没有联系。好比你要数几篇文章里的单词数,不同文章可以并行一样)
好,现在我们来审视下这个式子,哪些是常量,哪些是变量。式子最后有一个constant项,聪明如你,肯定猜到了,它就是前t-1棵树的正则化项。l(yi, yi^t-1)也是常数项。剩下的三个变量项分别是第t棵CART树的一次式,二次式,和整棵树的正则化项。再次提醒,这里所谓的树的一次式,二次式,其实都是某个叶子节点的值的一次式,二次式。
我们的目标是让这个目标函数最小化,常数项显然没有什么用,我们把它们去掉,就变成了下面这样:
好,现在我们可以回答之前的一个问题了,为什么一次式和二次式显得那么漂亮。因为这些一次式和二次式的系数是gi和hi,而gi和hi可以并行地求出来。而且,gi和hi是不依赖于损失函数的形式的,只要这个损失函数二次可微就可以了。这有什么好处呢?好处就是xgboost可以支持自定义损失函数,只需满足二次可微即可。强大了我的哥是不是?
模型正则化项
上面的式子已然很漂亮,但是,后面的Ω(ft)仍然是云遮雾罩,不清不楚。现在我们就来定义如何衡量一棵树的正则化项。这个事儿并没有一个客观的标准,可以见仁见智。为此,我们先对CART树作另一番定义,如下所示:
需要解释下这个定义,首先,一棵树有T个叶子节点,这T个叶子节点的值组成了一个T维向量w,q(x)是一个映射,用来将样本映射成1到T的某个值,也就是把它分到某个叶子节点,q(x)其实就代表了CART树的结构。w_q(x)自然就是这棵树对样本x的预测值了。
有了这个定义,xgboost就使用了如下的正则化项:
注意:这里出现了γ和λ,这是xgboost自己定义的,在使用xgboost时,你可以设定它们的值,显然,γ越大,表示越希望获得结构简单的树,因为此时对较多叶子节点的树的惩罚越大。λ越大也是越希望获得结构简单的树。
为什么xgboost要选择这样的正则化项?很简单,好使!效果好才是真的好。
至此,我们关于第t棵树的优化目标已然很清晰,下面我们对它做如下变形,请睁大双眼,集中精力:
这里需要停一停,认真体会下。Ij代表什么?它代表一个集合,集合中每个值代表一个训练样本的序号,整个集合就是被第t棵CART树分到了第j个叶子节点上的训练样本。理解了这一点,再看这步转换,其实就是内外求和顺序的改变。如果感觉还有困难,欢迎评论留言。
进一步,我们可以做如下简化:
其中的Gj和Hj应当是不言自明了。
对于第t棵CART树的某一个确定的结构(可用q(x)表示),所有的Gj和Hj都是确定的。而且上式中各个叶子节点的值wj之间是互相独立的。上式其实就是一个简单的二次式,我们很容易求出各个叶子节点的最佳值以及此时目标函数的值。如下所示:
obj*代表了什么呢?
它表示了这棵树的结构有多好,值越小,代表这样结构越好!也就是说,它是衡量第t棵CART树的结构好坏的标准。注意~注意~注意~,这个值仅仅是用来衡量结构的好坏的,与叶子节点的值可是无关的。为什么?请再仔细看一下obj*的推导过程。obj*只和Gj和Hj和T有关,而它们又只和树的结构(q(x))有关,与当前叶子节点的值没有关系。如下图所示:
Note:这里,我们对w*_j给出一个直觉的解释,以便能获得感性的认识。我们假设分到j这个叶子节点上的样本只有一个。那么,w*_j就变成如下这个样子:
这个式子告诉我们,w*_j的最佳值就是负的梯度乘以一个权重系数,该系数类似于随机梯度下降中的学习率。观察这个权重系数,我们发现,h_j越大,这个系数越小,也就是学习率越小。h_j越大代表什么意思呢?代表在该点附近梯度变化非常剧烈,可能只要一点点的改变,梯度就从10000变到了1,所以,此时,我们在使用反向梯度更新时步子就要小而又小,也就是权重系数要更小。
找出最优的树结构
好了,有了评判树的结构好坏的标准,我们就可以先求最佳的树结构,这个定出来后,最佳的叶子结点的值实际上在上面已经求出来了。
问题是:树的结构近乎无限多,一个一个去测算它们的好坏程度,然后再取最好的显然是不现实的。所以,我们仍然需要采取一点策略,这就是逐步学习出最佳的树结构。这与我们将K棵树的模型分解成一棵一棵树来学习是一个道理,只不过从一棵一棵树变成了一层一层节点而已。如果此时你还是有点蒙,没关系,下面我们就来看一下具体的学习过程。
我们以上文提到过的判断一个人是否喜欢计算机游戏为例子。最简单的树结构就是一个节点的树。我们可以算出这棵单节点的树的好坏程度obj*。假设我们现在想按照年龄将这棵单节点树进行分叉,我们需要知道:
1、按照年龄分是否有效,也就是是否减少了obj的值
2、如果可分,那么以哪个年龄值来分。
为了回答上面两个问题,我们可以将这一家五口人按照年龄做个排序。如下图所示:
按照这个图从左至右扫描,我们就可以找出所有的切分点。对每一个确定的切分点,我们衡量切分好坏的标准如下:
这个Gain实际上就是单节点的obj*减去切分后的两个节点的树obj*,Gain如果是正的,并且值越大,表示切分后obj*越小于单节点的obj*,就越值得切分。同时,我们还可以观察到,Gain的左半部分如果小于右侧的γ,则Gain就是负的,表明切分后obj反而变大了。γ在这里实际上是一个临界值,它的值越大,表示我们对切分后obj下降幅度要求越严。这个值也是可以在xgboost中设定的。
扫描结束后,我们就可以确定是否切分,如果切分,对切分出来的两个节点,递归地调用这个切分过程,我们就能获得一个相对较好的树结构。
注意:xgboost的切分操作和普通的决策树切分过程是不一样的。普通的决策树在切分的时候并不考虑树的复杂度,而依赖后续的剪枝操作来控制。xgboost在切分的时候就已经考虑了树的复杂度,就是那个γ参数。所以,它不需要进行单独的剪枝操作。
xgboost相比传统gbdt有何不同?xgboost为什么快?xgboost如何支持并行?
基分类器的选择:传统GBDT以CART作为基分类器,XGBoost还支持线性分类器,这个时候XGBoost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
二阶泰勒展开:传统GBDT在优化时只用到一阶导数信息,XGBoost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,XGBoost工具支持自定义损失函数,只要函数可一阶和二阶求导。
方差-方差权衡:XGBoost在目标函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出分数的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是XGBoost优于传统GBDT的一个特性。
Shrinkage(缩减):相当于学习速率(xgboost中的)。XGBoost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)
列抽样(column subsampling):XGBoost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是XGBoost异于传统GBDT的一个特性。
缺失值处理:XGBoost考虑了训练数据为稀疏值的情况,可以为缺失值或者指定的值指定分支的默认方向,这能大大提升算法的效率,paper提到50倍。即对于特征的值有缺失的样本,XGBoost可以自动学习出它的分裂方向。
XGBoost工具支持并行:Boosting不是一种串行的结构吗?怎么并行的?注意XGBoost的并行不是tree粒度的并行,XGBoost也是一次迭代完才能进行下一次迭代的(第次迭代的损失函数里包含了前面次迭代的预测值)。XGBoost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),XGBoost在训练之前,预先对数据进行了排序,然后保存为block(块)结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。
线程缓冲区存储:按照特征列方式存储能优化寻找最佳的分割点,但是当以并行计算梯度数据时会导致内存的不连续访问,严重时会导致cache miss,降低算法效率。paper中提到,可先将数据收集到线程内部的buffer(缓冲区),主要是结合多线程、数据压缩、分片的方法,然后再计算,提高算法的效率。
可并行的近似直方图算法:树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。大致的思想是根据百分位法列举几个可能成为分割点的候选者,然后从候选者中根据上面求分割点的公式计算找出最佳的分割点。
xgboost详细调参数指南参考下面链接
最后来看看随机森林算法:
由于随机森林每颗树的建立都可是独立的,所以可以进行并行运算。