《大数据时代》读书笔记(下)

第三部分,大数据时代的管理变革

一、风险是让数据主宰一切带来的隐忧。我们时刻都暴露在“第三只眼”之下:亚马逊监视着我们的购物习惯,谷歌监视着我们的网页浏览习惯,而微博似乎什么都知道,不仅窃听到了我们心中的“TA”,还有我们的社交关系网。

同时,我们的数据会被二次利用,很多数据在收集的时候并无意用作其他用途,而最终却产生了很多创新性的用途。想在大数据时代中用技术方法来保护隐私也是天方夜谭。如果所有人的信息本来都已经在数据库里,那么有意识地避免某些信息就是此地无银三百两。匿名化的技术途径在大部分情况下也不可行。而出现这种无效性则是由两个因素引起的:一是我们收集到的数据越来越多,二是我们会结合越来越多不同来源的数据。在大数据时代,不管是告知与许可、模糊化还是匿名化,这三大隐私保护策略都失效了。如今很多用户都觉得自己的隐私已经受到了威胁,当大数据变得更为普遍的时候,情况将更加不堪设想。

在电影《少数派报告》(Minoriy Report)开始时有一个场景,这部电影描述的是一个未来可以准确预知的世界,而罪犯在实施犯罪前就已受到了惩罚。人们不是因为所做而受到惩罚,而是因为将做,即使他们事实上并没有犯罪。

虽然电影中预测依靠的不是数据分析,而是三个超自然人的想象,但是《少数派报告》所描述的这个令人不安的社会正是不受限制的大数据分析可能会导致的:罪责的判定是基于对个人未来行为的预测。预测与惩罚,不是因为“所做”,而是因为“将做”。我们将生活在一个没有独立选择和自由意志的社会,在这里我们的道德指标将被预测系统所取代,个人一直受到集体意志的冲击。简单地说,如果一切都成为现实,大数据就会把我们禁锢在可能性之中。

美国军方在越战时对数据的使用、滥用和误用给我们提了一个醒,在由“小数据”时代向大数据时代转变的过程中,我们对信息的一些局限性必须给予高度的重视。数据的质量可能会很差;可能是不客观的;可能存在分析错误或者具有误导性;更糟糕的是,数据可能根本达不到量化它的目的。

我们比想象中更容易受到数据的统治——让数据以良莠参半的方式统治我们。其威胁就是,我们可能会完全受限于我们的分析结果,即使这个结果理应受到质疑。或者说,我们会形成一种对数据的执迷,因而仅仅为了收集数据而收集数据,或者赋予数据根本无权得到的信任。

大数据让我们盲目信任数据的力量和潜能,而忽略了它的局限性。只要得到了合理的利用,而不单纯只是为了“数据”而“数据”,大数据就会变成强大的武器。

二、掌控,责任与自由并举的信息管理。

当世界开始迈向大数据时代时,社会也将经历类似的地壳运动。在改变人类基本的生活与思考方式的同时,大数据早已在推动人类信息管理准则的重新定位。然而,不同于印刷革命,我们没有几个世纪的时间去适应,我们也许只有几年时间。

大数据时代,对原有规范的修修补补已经满足不了需要,也不足以抑制大数据带来的风险——我们需要全新的制度规范,而不是修改原有规范的适用范围。想要保护个人隐私就需要个人数据处理器对其政策和行为承担更多的责任。同时,我们必须重新定义公正的概念,以确保人类的行为自由(也相应地为这些行为承担责任)。新机构和专家们需要设计复杂的程序对大数据进行解读,挖掘出其潜在的价值和结论。他们也要向那些可能受害于大数据结论的人——因之被剥夺了工作、接受医疗或贷款权利的人,提供支持。对已有的规范进行修修补补已经不够了,我们需要推陈出新。

管理变革:1、个人隐私保护,从个人许可到让数据使用者承担责任。将责任从民众转移到数据使用者很有意义,也存在充分的理由,因为数据使用者比任何人都明白他们想要如何利用数据。他们的评估(或者由他们所雇用的专家制定的评估)避免了商业机密的泄露。也许更为重要的是,数据使用者是数据二级应用的最大受益者,所以理所当然应该让他们对自己的行为负责。

2、个人动因VS预测分析。在大数据时代,关于公正的概念需要重新定义以维护个人动因的想法:人们选择自我行为的自由意志。简单地说,就是个人可以并应该为他们的行为而非倾向负责。

大数据管理的基本支撑是保证我们依然是通过考虑他人的个人责任对其进行评判,而不是借助“客观”数据处理去决定他们是否违法。只有这样,我们才是把其当作人来对待——当作有行为选择自由和通过自主行为被评判的人。这就是从大数据推论到今天的无罪推定原则。

3、击碎黑盒子,大数据算法师的崛起。

大数据将要求一个新的人群来扮演这种角色,也许他们会被称作“算法师”。他们有两种形式:在机构外部工作的独立实体和机构内部的工作人员——正如公司有内部的会计人员和进行鉴证的外部审计师。

这些新的专业人员会是计算机科学、数学和统计学领域的专家,他们将担任大数据分析和预测的评估专家。他们必须保证公正和保密,就像现在的审计员和其他专业人员所做的一样。他们可以评估数据源的挑选,分析和预测工具的选取,甚至包括运算法则和模型,以及计算结果的解读是否正确合理。一旦出现争议,他们有权考察与分析结果相关的运算法则、统计方法以及数据集。

4、反数据垄断大亨。

反垄断法遏制了权力的滥用。然而令人惊奇的是,这些条例能从一个领域完美转移到另外一个领域,并且适用于不同类型的网络产业。这种不带任何偏袒的强有力的规章非常实用,因为它提供的是一个平等的竞争平合,一开始便没有任何优劣之分。因此,为了促进大数据平台上的良性竞争,政府必须运用反垄断条例。而且,就像世界上一些大型的数据拥有者那样,政府也应该公布其数据。令人高兴的是,这一切正在发生。

结语

正在发生的未来

大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的未来。

我们“做新、做多、做好、做快”的能力能释放出无限价值,产生新的赢家和输家。大部分的信息价值来自二级用途,即潜在价值,而不是我们所习惯认为的基本用途。结果,对于大多数数据来说,尽可能多地收集、等待信息增值并且让其他更适合挖掘其价值的人来分析它才是明智之举(前提是此人能够分享开发出的利润)。

大数据是一种资源,也是一种工具。它告知信息但不解释信息。它指导人们去理解,但有时也会引起误解,这取决于是否被正确使用。大数据的力量是那么耀眼,我们必须避免被它的光芒诱惑,并善于发现它固有的瑕疵。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352

推荐阅读更多精彩内容