2022-09-22 存储引擎不同的索引结构对比

学习资料:

https://shashankbaravani.medium.com/database-storage-engines-under-the-hood-705418dc0e35

https://blog.csdn.net/qq_31807385/article/details/113662819

核心问题:

了解存储引擎使用的不同的索引结构的特点和场景

存储引擎分类 日志结构存储引擎 面向页面的存储引擎

1.Hash

基于Hash的索引

无法进行范围查询&规模小 稠密索引 需要很大的内存存放稠密索引

比如Redis

2.SSTables和LSM Tree

基于SSTable的索引

压缩和合并更快 支持分块 天生更适合分布式

更好的利用Most Recent原则,多级结构

可以整块加载到内存进行范围查询

更适合写数量级高于读的场景

写 O(1) 读 k*O(n) 块数*每块的大小

内存中啥memtable,需要WAL来恢复数据

SSTable的合并依赖于块的大小以及数据的age

HBase and Cassandra是经典的使用该索引的数据结构

3.B-Trees

基于B树的索引

B-Trees also maintain a sorted in memory map but the underlying file sizes are much smallerblocks of 4KB in line with underlying hardware instead of much larger segments of many MBs.

Thenon leaflevel nodes in the BST contain information around the range of of keys beneath each node. To arrive at a record, we start at therootnode and traverse downwards, breaking down the range at each step ad moving in the direction of the nodes containing the sub-range to which the key belongs.

Theleaflevel nodes either contain the data itself inline or contain references to page blocks which hold the record we are interested in. The number of references to child pages in one page of the B-tree is called thebranching factor(usually in 100s).

B树的写需要把整个Block加载到内存,然后整体更新;这导致了读与写放大

4.Inverted Index

倒排索引

In search indexes such as ElasticSearch, an index is composed of shards

and each shard is an further broken down into segments. Each segment is

an inverted index in itself and this is how it looks like: a collection

of document Ids and the term frequency.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容

  • 《闭上眼睛才能看清楚自己》这本书是香海禅寺主持贤宗法师的人生体悟,修行心得及讲学录,此书从六个章节讲述了禅修是什么...
    宜均阅读 10,021评论 1 25
  • 前言 Google Play应用市场对于应用的targetSdkVersion有了更为严格的要求。从 2018 年...
    申国骏阅读 64,082评论 14 98
  • 《来,我们说说孤独》 1·他们都在写孤独 一个诗人 如果 不说说 内心的孤独 不将孤独 写进诗里 是不是很掉价呢 ...
    听太阳升起阅读 4,376评论 1 7
  • 自幼贫民窟长大的女子,侥幸多念了两本书,枉以为可以与人平起平坐。可是人生从来都是接力赛,我们却天真的当成了百米冲刺...
    Leeanran阅读 5,770评论 1 5
  • 云舒老师,姓甚名谁,男的女的,多大岁数,这些我全然不知。之所以要写写云舒老师,完全是因为他写的文章,如一个巨大的磁...
    数豆者m阅读 2,351评论 6 9