Python dask 使用 k8s 做分布式计算

1、前提条件:需要有 k8s 环境,这里使用的是阿里云 serverless k8s (需要安装coredns组件)
2、dask k8s 环境配置,部署 dask k8s operator

$ helm repo add dask https://helm.dask.org
$ helm repo update
$ helm repo list
NAME       URL
dask       https://helm.dask.org

$ helm search repo dask
$ helm pull dask/dask-kubernetes-operator
$ tar xvf dask-kubernetes-operator-2023.8.1.tgz
$ cd dask-kubernetes-operator
$ vim values.yaml
image:
  # name: ghcr.io/dask/dask-kubernetes-operator  # Docker image for the operator
  # 把镜像改成从南京大学ghcr.io镜像源拉取,避免拉取超时
  name: ghcr.nju.edu.cn/dask/dask-kubernetes-operator  # Docker image for the operator
  tag: "2023.8.1"           # Release version
  pullPolicy: IfNotPresent  # Pull policy

//  部署 dask k8s operator                    
$ helm install dask-kubernetes-operator-2023.8.1 ./dask-kubernetes-operator --values ./dask-kubernetes-operator/values.yaml

$ kubectl get pod
NAME                                                 READY   STATUS      RESTARTS   AGE
dask-kubernetes-operator-2023.8.1-68cd86f7cc-n2fsq   1/1     Running     0          1h

3、DaskJob 使用


https://kubernetes.dask.org/en/latest/operator_resources.html#daskjob

a .这里通过 annotations 使用了阿里云 serverless k8s 的 eci pod 竞价实例,可以节省部分成本
b. 里面的 image url 改成了南京大学的镜像源,避免拉取超时

$ cat dask-job.yaml
apiVersion: kubernetes.dask.org/v1
kind: DaskJob
metadata:
  name: simple-job
  namespace: default
spec:
  job:
    spec:
      containers:
        - name: job
          # image: "m.daocloud.io/ghcr.io/dask/dask:latest"
          # 使用 Python Dask 做分布式计算的业务代码,应该打包为单独的业务镜像来使用才对
          # 这里为了方便,直接用官方的镜像和示例代码来测试
          image: "ghcr.nju.edu.cn/dask/dask:latest"
          imagePullPolicy: "IfNotPresent"
          args:
            - python
            - -c
            - "from dask.distributed import Client; client = Client(); print(client) # Do some work..."

  cluster:
    spec:
      worker:
        replicas: 2
        metadata:
          annotations:
            k8s.aliyun.com/eci-spot-strategy: SpotAsPriceGo
            k8s.aliyun.com/eci-use-specs: 4-8Gi
        spec:
          containers:
            - name: worker
              # image: "m.daocloud.io/ghcr.io/dask/dask:latest"
              image: "ghcr.nju.edu.cn/dask/dask:latest"
              imagePullPolicy: "IfNotPresent"
              args:
                - dask-worker
                - --name
                - $(DASK_WORKER_NAME)
                - --dashboard
                - --dashboard-address
                - "8788"
              ports:
                - name: http-dashboard
                  containerPort: 8788
                  protocol: TCP
              env:
                - name: WORKER_ENV
                  value: hello-world # We dont test the value, just the name
      scheduler:
        metadata:
          annotations:
            k8s.aliyun.com/eci-spot-strategy: SpotAsPriceGo
            k8s.aliyun.com/eci-use-specs: 2-4Gi
        spec:
          containers:
            - name: scheduler
              # image: "m.daocloud.io/ghcr.io/dask/dask:latest"
              image: "ghcr.nju.edu.cn/dask/dask:latest"
              imagePullPolicy: "IfNotPresent"
              args:
                - dask-scheduler
              ports:
                - name: tcp-comm
                  containerPort: 8786
                  protocol: TCP
                - name: http-dashboard
                  containerPort: 8787
                  protocol: TCP
              readinessProbe:
                httpGet:
                  port: http-dashboard
                  path: /health
                initialDelaySeconds: 5
                periodSeconds: 10
              livenessProbe:
                httpGet:
                  port: http-dashboard
                  path: /health
                initialDelaySeconds: 15
                periodSeconds: 20
              env:
                - name: SCHEDULER_ENV
                  value: hello-world
        service:
          type: ClusterIP
          #type: LoadBalancer
          selector:
            dask.org/cluster-name: simple-job
            dask.org/component: scheduler
          ports:
            - name: tcp-comm
              protocol: TCP
              port: 8786
              targetPort: "tcp-comm"
            - name: http-dashboard
              protocol: TCP
              port: 8787
              targetPort: "http-dashboard"
              
$ kubectl apply -f dask-job.yaml

$ kubectl get pod
NAME                                                    READY   STATUS    RESTARTS   AGE
dask-kubernetes-operator-2023.8.1-68cd86f7cc-n2fsq      1/1     Running   0          20h
simple-job-default-worker-6cc619da50-66b7647d89-k9kqd   1/1     Running   0          28s
simple-job-default-worker-e5bf0bbc1e-6ff6c877b4-d4ksj   1/1     Running   0          28s
simple-job-runner                                       1/1     Running   0          29s
simple-job-scheduler-5db7df9769-v8926                   1/1     Running   0          28s

$ kubectl get svc
NAME                   TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)             AGE
kubernetes             ClusterIP   192.168.0.1      <none>        443/TCP             22h
simple-job-scheduler   ClusterIP   192.168.116.60   <none>        8786/TCP,8787/TCP   48s

// 查看运行结果
$ kubectl logs --tail=200 -f simple-job-runner
+ '[' '' ']'
+ '[' '' == true ']'
+ CONDA_BIN=/opt/conda/bin/conda
+ '[' -e /opt/app/environment.yml ']'
+ echo 'no environment.yml'
+ '[' '' ']'
no environment.yml
+ '[' '' ']'
+ exec python -c 'from dask.distributed import Client; client = Client(); print(client)# Do some work...'
<Client: 'tcp://172.26.219.61:8786' processes=0 threads=0, memory=0 B>

// 运行结束后,其他 pod 自动清理了
$  kubectl get pod
NAME                                                 READY   STATUS      RESTARTS   AGE
dask-kubernetes-operator-2023.8.1-68cd86f7cc-n2fsq   1/1     Running     0          20h
simple-job-runner                                    0/1     Completed   1          2m39s

参考资料:

  1. https://docs.dask.org/en/stable/deploying-kubernetes.html
  2. https://kubernetes.dask.org/en/latest/operator_resources.html
  3. https://doc.nju.edu.cn/books/35f4a/page/ghcr
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345