R 下载和整理KEGG ORTHOLOGY文件

登录KO (KEGG ORTHOLOGY) Database,进入下图页面:

image.png

点击进入KEGG Orthology (KO),进入下图界面:
image.png

右键复制链接,读入R来解析json文件。

library(rjson)
library(jsonlite)
library(tidyverse)
KO <- fromJSON("https://www.kegg.jp/kegg-bin/download_htext?htext=ko00001&format=json&filedir=")#下载并解析JSON文件
KO$name <- NULL
KO <- as.data.frame(KO) %>% 
  unnest(cols = c("children.name","children.children"),names_repair = tidyr_legacy) %>%#重要函数
  unnest(cols = c("children.name","name","children"),names_repair = tidyr_legacy) %>%
  unnest(cols = c("children.name","name","name1","children"),names_repair = tidyr_legacy)
colnames(KO) <- c("L1","L2","L3","KO") 
KO %<>% #整理KEGG ORTHOLOGY
  select(last_col(),everything()) %>%
  separate(col = "KO",sep = "  ",into = c("KO","Description")) %>%
  separate(col = "L1",sep = " ",into = c("L1_ID","L1"),extra = "merge") %>%
  filter(!L1_ID %in% c("09180","09190")) %>% #去除BRITE hierarchies和Not Included in Pathway or Brite两大类
  separate(col = "L2",sep = " ",into = c("L2_ID","L2"),extra = "merge") %>%
  separate(col = "L3",sep = " ",into = c("L3_ID","L3"),extra = "merge") %>%
  separate(col = "L3",sep = " \\[PATH:",into = c("L3","PathwayID")) %>%
  mutate(PathwayID=str_remove(PathwayID,pattern = "\\]")) %>%
  drop_na()#KEGG ORTHOLOGY等级有缺失的删掉
head(KO)
# A tibble: 6 x 9
# KO     Description                                                L1_ID L1         L2_ID L2                      L3_ID L3                     PathwayID
# <chr>  <chr>                                                      <chr> <chr>      <chr> <chr>                   <chr> <chr>                  <chr>    
# 1 K00844 HK; hexokinase [EC:2.7.1.1]                                09100 Metabolism 09101 Carbohydrate metabolism 00010 Glycolysis / Gluconeo~ ko00010  
# 2 K12407 GCK; glucokinase [EC:2.7.1.2]                              09100 Metabolism 09101 Carbohydrate metabolism 00010 Glycolysis / Gluconeo~ ko00010  
# 3 K00845 glk; glucokinase [EC:2.7.1.2]                              09100 Metabolism 09101 Carbohydrate metabolism 00010 Glycolysis / Gluconeo~ ko00010  
# 4 K25026 glk; glucokinase [EC:2.7.1.2]                              09100 Metabolism 09101 Carbohydrate metabolism 00010 Glycolysis / Gluconeo~ ko00010  
# 5 K01810 GPI, pgi; glucose-6-phosphate isomerase [EC:5.3.1.9]       09100 Metabolism 09101 Carbohydrate metabolism 00010 Glycolysis / Gluconeo~ ko00010  
# 6 K06859 pgi1; glucose-6-phosphate isomerase, archaeal [EC:5.3.1.9] 09100 Metabolism 09101 Carbohydrate metabolism 00010 Glycolysis / Gluconeo~ ko00010  
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容