结构型设计模式
关注类和对象的组合
代理模式
特点:代理控制对对的访问
优点:可以扩展目标对象的功能,使客户端和模板对象分离
缺点:增加一个代理对象请求速度变慢
实现
class AbstractSubject
{
public:
virtual void request() = 0;
};
class RealSubject:public AbstractSubject
{
public:
void request(){}
};
class Proxy: public AbstractSubject
{
private:
RealSubject *rsubject;
public:
Proxy(){
rsubject = new RealSubject();
}
void request()
{
rsubject->request();
}
};
适配器模式
特点:将一个类的接口转换成客户希望的另外一个接口
优点:复用现存的类,截距目标类和适配类接口不一致的问题
缺点:业务复杂性强,降低代码可读性
实现
class Target
{
public:
virtual void request() = 0;
};
class Adaptee
{
public:
void specialRequest() {}
};
class Adapter : public Target, private Adaptee
{
public:
void request()
{
specialRequest();
}
};
class ObjectAdapter : public Target
{
private:
Adaptee *_adaptee;
public:
ObjectAdapter(Adaptee *adaptee) : _adaptee(adaptee) {}
void request()
{
_adaptee->specialRequest();
}
};
桥接模式
特点:将抽象与实现分离,使它们可以独立变化
优点:抽象与实现分离,扩展能力强,符合开闭原则,符合合成复用原则
缺点:要求开发者针对抽象化进行设计与编程
实现
class Implementor
{
public:
virtual void action() = 0;
};
class ConcreteImplementorA : public Implementor
{
public:
void action(){}
};
class Abstraction
{
public:
virtual void operation() = 0;
};
class ConcreteAbstraction : public Abstraction
{
private:
Implementor *_impl;
public:
ConcreteAbstraction(Implementor *impl) : _impl(impl){}
void operation()
{
_impl->action();
}
};
装饰器模式
特点:指在不改变现有对象结构的情况下,动态地给该对象增加一些职责
优点:比继承灵活,完全遵守开闭原则
缺点:增加许多子类
实现
class Component
{
public:
virtual void operation()=0;
};
class ConcreteComponent : public Component
{
public:
void operation(){}
};
class Decorator: public Component
{
private:
Component *_component;
public:
Decorator(Component *c) : _component(c){}
void operation(){_component->operation();}
};
class ConcreteDecoratorA: public Decorator
{
public:
ConcreteDecoratorA(Component *c) : Decorator(c){}
void operation()
{
Decorator::operation();
}
};
外观模式
特点:为多个复杂的子系统提供一个一致的接口
优点:“迪米特法则”的典型应用
缺点:违背了"开闭原则",能很好地限制客户使用子系统类
实现
class SubSystemA
{
public:
void operation(){}
};
class Facade
{
private:
SubSystemA* sysA;
public:
Facade():sysA(){}
void operationA(){sysA->operation();}
};
享元模式
特点:有效地支持大量细粒度对象的复用
优点:相同对象只要保存一份,这降低了系统中对象的数量(减少内存使用)
缺点:对象共享,增加程序复杂性
实现
class Flyweight
{
private:
int state;
public:
virtual void operation() = 0;
};
class UnsharedConcreteFlyweight: Flyweight
{
private:
int state;
public:
UnsharedConcreteFlyweight(const int intrinsic_state):
state(intrinsic_state){}
void operation(){}
};
class ConcreteFlyweight : public Flyweight
{
private:
int state;
public:
ConcreteFlyweight(const int all_state):state(all_state){}
void operation(){}
};
class FlyweightFactory
{
private:
std::map<int,Flyweight*> flies;
public:
Flyweight *getFlyweight(const int key)
{
return new ConcreteFlyweight(key);
}
};
组合模式
特点:呈树结构
优点:满足“开闭原则”,简化了客户端代码
缺点:设计较复杂,不容易用继承的方法来增加构件的新功能
实现
class Component
{
public:
virtual Component *getChild(int){return 0;}
virtual void add(Component *){}
virtual void remove(int){}
virtual void operation() = 0;
};
class Composite: public Component
{
private:
std::vector<Component*> children;
public:
Component *getChild(const unsigned int index){return children[index];}
void add(Component *component){}
void remove(int index){}
void operation(){}
};
class Leaf:public Component
{
private:
int id;
public:
Leaf(int i) : id(id){}
void operation(){}
};