[TOC]
记录下异步请求实现思路,
- [1.Call中:]
- [2.Dispatcher中:]
- [3.Call中内部类AsyncCall:]
- [4.Call中getResponse():
- [5.Interceptor和chain的实现方式]
- [6.RetryInterceptor:实现请求重试]
- [7.HeaderInterceptor:处理Header]
- [8.ConnectInterceptor:实现连接复用]
[8.1连接池的实现方式:] - [9.CallServiceInterceptor:最核心的拦截器,使用socket实现请求,返回Response对象]
- [10.请求完成]
使用
- 创建CatHttpClient对象
- 创建Request对象
- 创建Call对象
- 调用Call.enqueue(Callback)开始运行过程
CatHttpClient catHttpClient = new CatHttpClient();
Request request = new Request.Builder()
.url("http://www.baidu.com")
.get()
.build();
Call call = catHttpClient.newCall(request);
call.enqueue(new Callback() {
@Override
public void onFailure(Call call, Throwable throwable) {
L.e("MainActivity:onFailure:" + throwable.toString());
}
@Override
public void onResponse(Call call, Response response) {
L.e("MainActivity:onResponse");
}
});
代码调用过程
1.Call中:
调用了Dispatcher对象的enqueue方法,传入AsyncCall对象,这是一个Runnable
public Call enqueue(Callback callback){
synchronized (this){
if(isExecuted){
throw new IllegalStateException("call has already executed");
}
isExecuted = true;
}
catHttpClient.dispatcher().enqueue(new AsyncCall(callback));
return this;
}
2.Dispatcher中:
AsyncCall(runnable)放入线程池,调用它的run方法
//最多同时请求
int maxRequests;
int maxRequestsPerHost;
//线程池,发送异步请求
private ExecutorService executorService;
//等待执行队列
private final Deque<Call.AsyncCall> readyAsyncCalls = new ArrayDeque<>();
//正在执行队列
private final Deque<Call.AsyncCall> runningAsyncCalls = new ArrayDeque<>();
public void enqueue(Call.AsyncCall call){
if(runningAsyncCalls.size() >= maxRequests || runningCallsForHost(call) >= maxRequestsPerHost){
L.e("Dispatcher:超出最大请求数,放入等待执行队列");
readyAsyncCalls.add(call);
}else{
L.e("Dispatcher:开始执行,放入正在执行队列");
runningAsyncCalls.add(call);
executorService().execute(call);
}
}
3.Call中内部类AsyncCall:
getResponse()是执行任务,finally中通知Dispatcher任务结束
final class AsyncCall implements Runnable{
Callback callback;
public AsyncCall(Callback callback){
this.callback = callback;
}
public String host(){
return request.url().host;
}
@Override
public void run() {
L.e("Call.AsyncAll.run方法开始,拦截器链条开始");
try {
Response response = getResponse();
if(isCanceled){
callback.onFailure(Call.this,new IOException("call canceled"));
}else{
callback.onResponse(Call.this,response);
}
}catch (Exception e){
callback.onFailure(Call.this,e);
}finally {
catHttpClient.dispatcher().finished(this);
}
}
}
4.Call中getResponse():
OkHttp的重点在于拦截器实现的责任链模式,将拦截器放入一个list中,然后通过责任链的方式调用,从CallServiceInterceptor获取Response,再层层返回,每层拦截器,处理对应的业务
private Response getResponse() throws IOException{
ArrayList<Interceptor> interceptors = new ArrayList<>();
interceptors.addAll(catHttpClient.interceptors());
interceptors.add(new RetryInterceptor());
interceptors.add(new HeaderInterceptor());
interceptors.add(new ConnectInterceptor());
interceptors.add(new CallServiceInterceptor());
Chain chain = new InterceptorChain(interceptors,this,null,0);
return chain.proceed();
}
5.Interceptor和chain的实现方式
- Chain链条,每个链条中包含他在整个拦截器链的index,Call中任务开始的地方创建了第一个Chain并调用了他的proceed(),传入index=0,proceed()中,获取到index=0的拦截器,调用拦截器的interceptor方法,返回值response作为proceed()的返回值返回,同时创建好链条中下一个Chain,由下一个链条去处理index=1的拦截器.有几个拦截器就有几个Chain.
- 链中Chain的返回值Response是他处理的Interceptor的返回值,Interceptor的参数是下一个index的Chain,返回值也是下一个Chain的返回值,这样一直往下取得是最后一个拦截器,即实际连网发送请求的CallServiceInterceptor的返回值.
public interface Interceptor {
Response interceptor(Chain chain) throws IOException;
}
public class InterceptorChain implements Chain {
ArrayList<Interceptor> interceptors;
Call call;
HttpConnection httpConnection;
int index;
public InterceptorChain(ArrayList<Interceptor> interceptors, Call call, HttpConnection httpConnection, int index) {
this.interceptors = interceptors;
this.call = call;
this.httpConnection = httpConnection;
this.index = index;
}
@Override
public Response proceed(HttpConnection httpConnection) throws IOException {
Interceptor interceptor = interceptors.get(index);
Chain chain = new InterceptorChain(interceptors,call,httpConnection,index + 1);
return interceptor.interceptor(chain);
}
}
6.RetryInterceptor:实现请求重试
因为责任链的实现方式,所以直接取下一个Chain的返回值,这包含了后面所有拦截器的处理结果,如果有异常,表示请求过程需要重试,直接循环调用下一个Chain的proceed()
public class RetryInterceptor implements Interceptor {
@Override
public Response interceptor(Chain chain) throws IOException {
L.e("RetryInterceptor:interceptor()");
InterceptorChain interceptorChain = (InterceptorChain) chain;
Call call = interceptorChain.call;
int retries = call.client().retries();
IOException ioException = null;
for (int i = 0; i < retries; i++) {
if(call.isCanceled()){
throw new IOException("call canceled!");
}
try{
return chain.proceed();
}catch(IOException e){
ioException = e;
}
}
throw ioException;
}
}
7.HeaderInterceptor:处理Header
public class HeaderInterceptor implements Interceptor {
@Override
public Response interceptor(Chain chain) throws IOException {
L.e("HeaderInterceptor:interceptor()");
InterceptorChain interceptorChain = (InterceptorChain) chain;
Request request = interceptorChain.call.request();
Map<String, String> headers = request.headers();
headers.put(HttpCodec.HEAD_HOST, request.url().getHost());
headers.put(HttpCodec.HEAD_CONNECTION, HttpCodec.HEAD_VALUE_KEEP_ALIVE);
if (null != request.body()) {
String contentType = request.body().contentType();
if (contentType != null) {
headers.put(HttpCodec.HEAD_CONTENT_TYPE, contentType);
}
long contentLength = request.body().contentLength();
if (contentLength != -1) {
headers.put(HttpCodec.HEAD_CONTENT_LENGTH, Long.toString(contentLength));
}
}
return chain.proceed();
}
}
8.ConnectInterceptor:实现连接复用
将每个请求封装成一个对象,包含有url,host,port等信息,一般的做法是,每个请求重复1打开连接-2写入请求-3读取响应-4释放连接这个过程,但经常的,同一个应用中,大部分请求都是对同一个host,port地址的请求,所以可以在步骤3后不进行4,让这个连接存在一段时间,下一次请求直接进行步骤2,避免频繁打开连接。需要注意的是连接的缓存时间和连接需要是长连接Keep-Alive的
public class ConnectInterceptor implements Interceptor {
@Override
public Response interceptor(Chain chain) throws IOException {
L.e("ConnectInterceptor:interceptor()");
InterceptorChain interceptorChain = (InterceptorChain) chain;
Request request = interceptorChain.call.request();
CatHttpClient client = interceptorChain.call.client();
HttpUrl url = request.url();
String host = url.getHost();
int port = url.getPort();
HttpConnection httpConnection = client.connectionPool().get(host, port);
if(null == httpConnection){
L.e("ConnectInterceptor:连接池没有,new HttpConnection()");
httpConnection = new HttpConnection();
}else{
L.e("ConnectInterceptor:从连接池得到HttpConnection");
}
httpConnection.setRequest(request);
Response response = chain.proceed(httpConnection);
if(response.isKeepAlive()){
client.connectionPool().put(httpConnection);
}
return response;
}
}
8.1连接池的实现方式:
每个连接保存一个最近使用的时间。这里创建了一个守护线程池用于回收连接,当有请求结束,连接被put到连接池中时,回收线程创建,调用clean(),clean()中判断所有连接的最短缓存时间还有多久以及回收超时的连接,wait后,会继续调用clean()。中间如果被重用,则当又put回来时更新最近使用时间,重新开始过程。clean()中如果连接池回收完了,则回收停止。put()时开始回收程序
public class HttpConnectionPool {
//长连接最大时间
private final long keepAliveDuration;
//复用队列
private final Deque<HttpConnection> httpConnections = new ArrayDeque<>();
private boolean isCleanRunning;
public HttpConnectionPool() {
this(1, TimeUnit.MINUTES);
}
public HttpConnectionPool(long keepAliveDuration, TimeUnit timeUnit) {
this.keepAliveDuration = timeUnit.toMillis(keepAliveDuration);
}
private static final Executor executor = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 10, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>(), new ThreadFactory() {
@Override
public Thread newThread(Runnable r) {
Thread thread = new Thread(r, "catHttp.socket回收线程");
//守护线程,当java虚拟机中没有非守护线程在运行的时候,java虚拟机会关闭
thread.setDaemon(true);
return thread;
}
});
//检测闲置socket并对其进行清理
private Runnable cleanRunnable = new Runnable() {
@Override
public void run() {
while (true) {
long waitTime = clean();
L.e("waitTime = " + waitTime);
if (waitTime <= 0) {
return;
}
synchronized (HttpConnectionPool.this) {
try {
//调用某个对象的wait()方法能让当前线程阻塞,
// 并且当前线程必须拥有此对象的monitor(即锁)
HttpConnectionPool.this.wait(waitTime);
} catch (InterruptedException e) {
L.e(e.toString());
}
}
}
}
};
public void put(HttpConnection connection) {
L.e("HttpConnectionPool:连接池新增");
//执行检测清理
if (!isCleanRunning) {
L.e("HttpConnectionPool:连接池回收程序开始");
isCleanRunning = true;
executor.execute(cleanRunnable);
}
httpConnections.add(connection);
}
public HttpConnection get(String host, int port) {
Iterator<HttpConnection> iterator = httpConnections.iterator();
while (iterator.hasNext()) {
HttpConnection connection = iterator.next();
//查连接是否复用( 同样的host )
if (connection.isSameAddress(host, port)) {
//正在使用的移出连接池
iterator.remove();
L.e("HttpConnectionPool:连接池获取");
return connection;
}
}
return null;
}
private long clean() {
long now = System.currentTimeMillis();
long longestIdleDuration = -1;
synchronized (this) {
L.e("HttpConnectionPool:连接池清理......");
for (Iterator<HttpConnection> i = httpConnections.iterator(); i.hasNext(); ) {
HttpConnection connection = i.next();
//获得闲置时间 多长时间没使用这个了
long idleDuration = now - connection.lastUseTime;
//如果闲置时间超过允许
if (idleDuration > keepAliveDuration) {
connection.closeQuietly();
i.remove();
L.e("HttpConnectionPool:移出连接池");
continue;
}
//获得最大闲置时间
if (longestIdleDuration < idleDuration) {
longestIdleDuration = idleDuration;
}
}
//下次检查时间
if (longestIdleDuration >= 0) {
return keepAliveDuration - longestIdleDuration;
} else {
//连接池没有连接 可以退出
L.e("HttpConnectionPool:连接池空,连接池回收程序结束");
isCleanRunning = false;
return longestIdleDuration;
}
}
}
}
9.CallServiceInterceptor:最核心的拦截器,使用socket实现请求,返回Response对象
public class CallServiceInterceptor implements Interceptor {
@Override
public Response interceptor(Chain chain) throws IOException {
L.e("CallServiceInterceptor:interceptor()");
InterceptorChain interceptorChain = (InterceptorChain) chain;
final HttpCodec httpCodec = new HttpCodec();
HttpConnection connection = interceptorChain.httpConnection;
InputStream is = connection.call(httpCodec);
//HTTP/1.1 200 OK 空格隔开的响应状态
String readLine = httpCodec.readLine(is);
Map<String, String> headerMap = httpCodec.readHeaders(is);
//是否保持连接
boolean isKeepAlive = false;
if(headerMap.containsKey(HttpCodec.HEAD_CONNECTION)){
isKeepAlive = headerMap.get(HttpCodec.HEAD_CONNECTION).equalsIgnoreCase(HttpCodec.HEAD_VALUE_KEEP_ALIVE);
}
int contentLength = -1;
if (headerMap.containsKey(HttpCodec.HEAD_CONTENT_LENGTH)) {
contentLength = Integer.valueOf(headerMap.get(HttpCodec.HEAD_CONTENT_LENGTH));
}
//分块编码数据
boolean isChunked = false;
if (headerMap.containsKey(HttpCodec.HEAD_TRANSFER_ENCODING)) {
isChunked = headerMap.get(HttpCodec.HEAD_TRANSFER_ENCODING).equalsIgnoreCase(HttpCodec.HEAD_VALUE_CHUNKED);
}
String body = null;
if(contentLength > 0){
byte[] bytes = httpCodec.readBytes(is, contentLength);
body = new String(bytes);
} else if(isChunked){
body = httpCodec.readChunked(is);
}
String[] split = readLine.split(" ");
int code = Integer.valueOf(split[1]);
connection.updateLastUseTime();
return new Response(code,contentLength,headerMap,body,isKeepAlive);
}
}
10.请求完成
生成Response后,经过每个拦截器处理后,最终返回到3.Call中内部类AsyncCall.run(),getResponse()返回值中,这里回收Callback的成功失败方法,通知Dispatcher请求完毕
public void finished(Call.AsyncCall call) {
L.e("Dispatcher:请求结束 移出正在运行队列,判断是否执行等待队列中的请求");
synchronized (this) {
runningAsyncCalls.remove(call);
//判断是否执行等待队列中的请求
promoteCalls();
}
}