JAVA API
根据官网API进行的整合,提供了增删改查、分组的demo
前置条件 :
- JDK1.8
- elasticsearch 5.4
- maven 项目
1.新建maven项目,添加依赖
#添加more-core依赖,或者自行添加sping依赖代替(私服依赖)
<dependency>
<groupId>com.umpay</groupId>
<artifactId>mars-core</artifactId>
<version>2.0.0-SNAPSHOT</version>
</dependency>
#client依赖(必须的)
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>5.4.1</version>
</dependency>
#使用了LifeCycle的生命周期类(非必须),可使用Spring的生命周期或者其他来实现(私服依赖)
<dependency>
<groupId>com.umpay</groupId>
<artifactId>typhos-kernel</artifactId>
</dependency>
关于日志
若使用log4j 2来记录日志,增加如下依赖
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-api</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
若使用其他日志,如logback,需添加slf4j桥转接
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.8.2</version>
</dependency>
2.客户端实现
ElasticsearchClient.java
①设置变量,set方法自己生成
private String clusterName = "elasticsearch";//设置集群名称
private String clusterNodes;//节点的ip:port
private boolean sniff = true;// 是否自动检测变化节点
private String pingTimeout = "5s";// 等待来自节点的ping响应的时间。默认为5 s
private boolean ignoreClusterName = false;//是否忽略集群名称
private String nodesSamplerInterval = "5s";// 对列出和连接的节点进行采样的频率。默认为5 s
private TransportClient client;
②启动方法
@Override
protected void doStart( ) throws Exception {
buildClient();
logger.info( "elasticSearch client is connected");
super.doStart( );
}
protected void buildClient( ) throws Exception {
client = new PreBuiltTransportClient( settings( ) );
Assert.hasText( clusterNodes, "[Assertion failed] clusterNodes settings missing." );
for( String clusterNode : clusterNodes.split( ";" )) {
String hostName = clusterNode.substring( 0,clusterNode.indexOf( ":" ) );
String port = clusterNode.substring( clusterNode.indexOf( ":" )+1,clusterNode.length( ) );
Assert.hasText( hostName, "[Assertion failed] missing host name in 'clusterNodes'" );
Assert.hasText( port, "[Assertion failed] missing port in 'clusterNodes'" );
logger.info( "adding transport node : " + clusterNode );
client.addTransportAddress( new InetSocketTransportAddress( InetAddress.getByName( hostName ), Integer.valueOf( port ) ) );
}
client.connectedNodes( );
}
private Settings settings( ) {
return Settings.builder( ).put( "cluster.name", clusterName ).put( "client.transport.sniff", sniff )
.put( "client.transport.ignore_cluster_name", ignoreClusterName )
.put( "client.transport.ping_timeout", pingTimeout )
.put( "client.transport.nodes_sampler_interval", nodesSamplerInterval ).build( );
}
③停止方法
@Override
protected void doStop( ) throws Exception {
try {
logger.info( "Closing elasticSearch client" );
if( client != null ) {
client.close( );
}
} catch( final Exception e ) {
logger.error( "Error closing ElasticSearch client: ", e );
}
super.doStop( );
}
④设置单例
private ElasticsearchClient(){}
public static ElasticsearchClient getInstance(){
return InstanceHolder.instance;
}
private static final class InstanceHolder {
public static final ElasticsearchClient instance = new ElasticsearchClient( );
}
⑤ 提供getClient方法
public TransportClient getClient(){
return client;
}
3.sping 配置
<bean id="esClient" class="com.umpay.mars.simu.elasticsearch.client.ElasticsearchClient" factory-method="getInstance"
init-method="start" destroy-method="stop">
<property name="clusterName" value="es5.4"/>
<property name="clusterNodes" value="192.168.181.130:9300"/>
<property name="sniff" value="true"/>
<property name="pingTimeout" value="50s"/>
<property name="nodesSamplerInterval" value="5s"/>
<property name="ignoreClusterName" value="false"/>
</bean>
4.启动
public static void main( String[] args ) throws Exception {
App.getInstance( ).start( );//可替换成其他加载spring的方式
}
5.数据的增删改
① 单条数据插入
public static void insert( ) {
TransportClient client = ElasticsearchClient.getInstance( ).getClient( );
//bill-->索引,submit-->类型
IndexResponse response =client.prepareIndex( "bill", "submit" ).setSource( "{\"mobile\":\"14445424" + i + "\",\"status\":\"1\",\"orgId\":\"553\",\"apId\":\"ap01\",\"bizCode\":\"001\"}" ).get( );
System.out.println( response.getIndex( ) + "-" + response.getId( ) + "-" +esponse.getType( ) );
}
②批量插入、删除
bulk
public static void bluk( ) {
TransportClient client = ElasticsearchClient.getInstance( ).getClient( );
BulkRequestBuilder bulkRequest = client.prepareBulk( );
for( int i = 0; i < 1000; i++ ) {
//可add index/delete 请求
bulkRequest.add( client.prepareIndex( "bill", "submit" ).setSource("{\"mobile\":\"144dfdf5424" + i + "\",\"status\":\"5\",\"orgId\":\"5ds5\",\"apId\":\"ap03\",\"bizCode\":\"002\"}" ) );
bulkRequest.add(client.prepareDelete( "bill", "submit" ,"1" ));//index,type,id
}
//此时发送处理请求
BulkResponse bulkResponse = bulkRequest.get( );
if( bulkResponse.hasFailures( ) ) {
//失败处理
}
}
③ BulkProcessor--它提供了一个简单的接口,可以根据请求的数量或大小,或在给定的时间段后自动执行批量操作。
BulkProcessor bulkProcessor = BulkProcessor.builder(
client, <1>
new BulkProcessor.Listener() {
@Override
public void beforeBulk(long executionId,
BulkRequest request) { ... } <2>
@Override
public void afterBulk(long executionId,
BulkRequest request,
BulkResponse response) { ... } <3>
@Override
public void afterBulk(long executionId,
BulkRequest request,
Throwable failure) { ... } <4>
})
.setBulkActions(10000) <5>
.setBulkSize(new ByteSizeValue(5, ByteSizeUnit.MB)) <6>
.setFlushInterval(TimeValue.timeValueSeconds(5)) <7>
.setConcurrentRequests(1) <8>
.setBackoffPolicy(
BackoffPolicy.exponentialBackoff(TimeValue.timeValueMillis(100), 3)) <9>
.build();
说明:
<1> elasticsearch客户端
<2> 每个批量请求前调用,例如可以查询numberOfActions->request.numberOfActions()
<3> 每个批量执行后调用此方法。例如可以检查是否有一些失败的请求->response.hasFailures()
<4> 每个批量执行后,抛出了异常调用此方法,大部分失败了
<5> 设置批量大小,比如每到10000个批次就处理
<6> 设置数据量大小,比如每5M处理一次
<7> 设置定时处理间隔,比如每5s处理一次
<8> 设置并发请求的数量。值为0意味着只有一个单一的请求被允许执行。值为1时表示1个并发请求,请求是累计的批次请求
<9> 设置一个补偿政策,当一次批量请求失败,并抛出EsRejectedExecutionException (表明请求处理不过来)的异常时,初次等待100ms重试,重试3次,重试等待时间呈指数增长,禁用补偿政策,通过设置BackoffPolicy.noBackoff().
默认值:
bulkActions = 1000
bulkSize = 5mb
不设置 flushInterval
concurrentRequests = 1
backoffPolicy设置次8重试和开始50毫秒的延迟。总等待时间大约是5.1秒。
添加的请求
IndexRequest、DeleteRequest、UpdateRequest、还有upsert的请求
bulkProcessor.add(new IndexRequest("twitter", "tweet", "1").source(/* your doc here */));
bulkProcessor.add(new DeleteRequest("twitter", "tweet", "2"));
bulkProcessor.add(new UpdateRequest( "report", "test", "2" ).doc( "{\"orgId\":\"1\"}" ))
//id存在则更新否则就插入
bulkProcessor.add(new UpdateRequest( "report", "test", "2" ).doc( "{\"orgId\":\"1\"}" ).upsert( /* your doc here */))
BulkProcessor关闭
当文档加载到 BulkProcessor后,通过使用awaitClose或 close方法将其关闭:
bulkProcessor.awaitClose(10, TimeUnit.MINUTES);
或者
bulkProcessor.close();
如果被设置flushInterval
,这两种方法都可以flush任何剩余的文档,并禁用所有其他预定的flush政策。如果启用了并发请求,在等待的超时时间内完成了所有的bulk
请求,awaitClose
方法将会返回true ,否则会返回false。close
方法不等待任何剩余的批量请求完成并立即退出。
④update --当id不存在时将会抛出异常
public static void update( ) throws InterruptedException, ExecutionException {
TransportClient client = ElasticsearchClient.getInstance( ).getClient( );
UpdateRequest updateRequest = new UpdateRequest( "report", "test", "338799bd8c40e1963fd56557fb161c" ).doc( "{\"orgId\":\"333\"}" );
client.update( updateRequest ).get( );
}
⑤upsert--id不存在时就插入
public static void upsert( ) throws InterruptedException, ExecutionException {
TransportClient client = ElasticsearchClient.getInstance( ).getClient( );
UpdateRequest updateRequest = new UpdateRequest( "report", "test", "338799bd8c40e1963fd56557fb161c" ).doc( "{\"orgId\":\"333\"}" ).upsert(/*source*/ );
client.update( updateRequest ).get( );
}
⑥分组
分组的结果是树形结构的json,使用时需要自行拼装需要的对象
{
"aggregations": {
"ap_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "ap02",
"doc_count": 304000,
"org_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "5ds5",
"doc_count": 300000
},
{
"key": "5ds3",
"doc_count": 2000
},
{
"key": "5ds4",
"doc_count": 2000
}
]
}
},
{
"key": "ap03",
"doc_count": 300000,
"org_count": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "5ds5",
"doc_count": 300000
}
]
}
}
]
}
}
}
java code
public static void aggregation( ) {
SearchRequestBuilder sbuilder = ElasticsearchClient.getInstance( ).getClient( ).prepareSearch( "bill" ).setTypes( "submit" );
TermsAggregationBuilder apBuilder = AggregationBuilders.terms( "ap_count" ).field( "apId" );
TermsAggregationBuilder orgBuilder = AggregationBuilders.terms( "org_count" ).field( "orgId" );
apBuilder.subAggregation( orgBuilder );
sbuilder.addAggregation( apBuilder );
SearchResponse response = sbuilder.execute( ).actionGet( );
Map<String, Aggregation> aggMap = response.getAggregations( ).asMap( );
StringTerms teamAgg = (StringTerms) aggMap.get( "ap_count" );
Iterator<Bucket> teamBucketIt = teamAgg.getBuckets( ).iterator( );
while( teamBucketIt.hasNext( ) ) {
Bucket buck = teamBucketIt.next( );
String key = buck.getKeyAsString( );
long count = buck.getDocCount( );
System.out.println(key+"--"+count);
Map subaggmap = buck.getAggregations( ).asMap( );
StringTerms orgAgg = (StringTerms) subaggmap.get( "org_count" );
Iterator<Bucket> orgBucketIt = orgAgg.getBuckets( ).iterator( );
while(orgBucketIt.hasNext( )){
Bucket orgBuck = orgBucketIt.next( );
String orgKey=orgBuck.getKeyAsString( );
long orgCount = orgBuck.getDocCount( );
System.out.println(orgKey+"--"+orgCount);
}
}
}
6.数据查询
①get--根据index,type,id
GetResponse response = client.prepareGet("twitter", "tweet", "1").get();
可设置是否多个线程处理请求,默认为true
GetResponse response = client.prepareGet("twitter", "tweet", "1")
.setOperationThreaded(false)
.get();
②根据条件查询、分页
public static void queryPage(){
TransportClient client = ElasticsearchClient.getInstance( ).getClient( );
SearchResponse response = client.prepareSearch("bill")
.setTypes("submit")
.setSearchType(SearchType.DFS_QUERY_THEN_FETCH)
.setQuery(QueryBuilders.termQuery("orgId", "5ds5")) // Query
//.setPostFilter(QueryBuilders.rangeQuery("age").from(12).to(18)) // Filter
.setFrom(0).setSize(60).setExplain(true)
.get();
SearchHits hits = response.getHits();
for (SearchHit searchHit : hits) {
Map source = searchHit.getSource();
for(Object key : source.keySet( )){
System.out.println(key+"-" +source.get( key ));
}
}
}