基于caffe的DeepId人脸检测/识别模型训练

前言

如今,深度学习开发成为了cv开发工程师必备的技能之一,许多在校学生入门深度学习往往是从最经典的LetNet-5,然后学习AlexNet,VGGNet,GoogLeNet,ResNet。然而这些网络最初是用于ImageNet上数据的比赛,在实际开发中我们往往数据不够,硬件资源有限,因此熟悉这些网络之后,我们可以做一个简单的小项目,无论是工业时代,还是人工智能时代,一切的一切都是围绕着人,因此我们可以尝试比如人脸识别,人脸检测这样接地气的项目。本项目基于caffe+ubuntu18.04,二分类的人脸分类器的训练。


开发环境

. Ubuntu18.04
. caffe
. pycaffe
. Anaconda3


开发环境配置

为什么要选择caffe?
目前主流的深度学习框架有Tensorflow,pyTorch,mxNet,caffe等。
. caffe的优势:

  1. 原则上不用写代码,只需要定义好网络结构,网络超参数,即可训练得到模型
  2. caffe本身采用C++开发,熟悉C++的同学比较亲切。C++可以方便移植到Android,ARM等平台
  3. caffe有Python,Matlab接口,使用简单

. caffe的不足之处:

  1. 项目目前已经停止维护了
  2. 安装和编译是一件头疼的事,依赖许多第三方的库,尤其在windows上编译比较麻烦
  3. 文档不够完善,只有官网上的一些例子参考,没有系统的文档
  4. 不支持一些新的网络特性

强烈建议在Ubuntu18.04的系统上进行caffe安装,过程非常简单,一行命令搞定
Ubuntu18.04 安装caffe

sudo apt-get install caffe-cpu

或者

sudo apt-get install caffe-gpu

若安装好caffe,打开终端,输入:

caffe
图片.png

说明安装成功


项目总体介绍

1. 项目目标
训练一个二分类的人脸分类器模型(caffemodel),输入一张图像,输出该图像为人脸的概率

2. 采用的网络模型
修改后的DeepId网络,DeepId用于人脸特征提取

3. 训练数据规模
1000k的数据,来源于ALFW人脸数据库


网络模型

在caffe中网络模型一般有2中方法生成,一种是直接写train_val.prototxt,另一种方式采用pycaffe用python代码定义好网络结构,生成train_val,prototxt,建议采用第二种。这里直接贴出来网络结构。
train_val.prototxt
其中有几个地方需要手动设置:

  1. source: xxxx/train_lmdb 这里设置为训练数据lmdb的路径
  2. source: xxxx/val_lmdb 这里设置为验证数据的lmdb的路径
  3. batch_size: 32/64/128/256/512, 根据自己显卡显存大小设置
  4. fc7->output_num 原始的deepID是1000,这里我们进行二分类,改为2
#############################  DATA Layer  #############################
name: "face_train_val"
layer {
  top: "data"
  top: "label"
  name: "data"
  type: "Data"
  data_param {
    source: "./DATA/train_lmdb"
    backend:LMDB
    batch_size: 128
  }
  transform_param {
     mirror: true
  }
  include: { phase: TRAIN }
}

layer {
  top: "data"
  top: "label"
  name: "data"
  type: "Data"
  data_param {
    source: "./DATA/val_lmdb"
    backend:LMDB
    batch_size: 128
  }
  transform_param {
    mirror: true
  }
  include: { 
    phase: TEST 
  }
}

#############################  CONV NET 1 #############################
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    name: "conv1_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv1_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 20
    kernel_size: 3
    stride: 1
    pad: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "conv1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool1"
  type:  "Pooling"
  bottom: "norm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    name: "conv2_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv2_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 40
    kernel_size: 3
    pad: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "conv2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2"
  type:  "Pooling"
  bottom: "norm2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}

layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    name: "conv3_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv3_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 60
    kernel_size: 3
    pad: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "norm3"
  type: "LRN"
  bottom: "conv3"
  top: "norm3"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool3"
  type:  "Pooling"
  bottom: "norm3"
  top: "pool3"

  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4"
  param {
    name: "conv4_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "conv4_b"
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 80
    kernel_size: 3
    pad: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "norm4"
  type: "LRN"
  bottom: "conv4"
  top: "norm4"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool4"
  type:  "Pooling"
  bottom: "norm4"
  top: "pool4"

  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}

layer {
  name: "deepid"
  type:  "InnerProduct"
  bottom: "pool4"
  top: "deepid"
  param {
    name: "fc5_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "fc5_b"
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 160
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "deepid"
  top: "deepid"
}
layer {
  name: "drop6"
  type:  "Dropout"
  bottom: "deepid"
  top: "deepid"
  dropout_param {
    dropout_ratio: 0.5
  }
}

layer {
  name: "fc7"
  type:  "InnerProduct"
  bottom: "deepid"
  top: "fc7"
  param {
    name: "fc7_w"
    lr_mult: 1
    decay_mult: 1
  }
  param {
    name: "fc7_b"
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }

}
layer {
  name: "accuracy"
  type:  "Accuracy"
  bottom: "fc7"
  bottom: "label"
  top: "accuracy"
  include: { phase: TEST }
}
layer {
  name: "loss"
  type:  "SoftmaxWithLoss"
  bottom: "fc7"
  bottom: "label"
  top: "loss"
  #loss_weight: 0.5
}

模型可视化
模型可视化网址

图片.png

网络局部图


训练数据制作

网络参数设置

训练

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,639评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,277评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,221评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,474评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,570评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,816评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,957评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,718评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,176评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,511评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,646评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,322评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,934评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,755评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,987评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,358评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,514评论 2 348

推荐阅读更多精彩内容