机器学习分类

监督/非监督学习

监督学习

K近邻算法
线性回归
逻辑回归
支持向量机(SVM)
决策树和随机森林
神经网络

非监督学习

聚类

K 均值
层次聚类分析(Hierarchical Cluster Analysis,HCA)
期望最大值(Experimental Maximization EM)

可视化和降维

主成分分析(Principal Component Analysis,PCA)
核主成分分析(Kernel PCA)
局部线性嵌入(Locally-Linear Embedding,LLE)
t-分布邻域嵌入算法(t-distributed Stochastic Neighbor Embedding,t-SNE)

关联性规则学习(Associatation rule learning)

Apriori 算法
Eclat 算法

半监督学习

一些算法可以处理部分带标签的训练数据,通常是大量不带标签数据加上小部分带标签数据。这称作半监督学习。

深度信念网络(deep belief networks)

是基于被称为互相叠加的受限玻尔兹曼机(restricted Boltzmann machines,RBM)的非监督组件。

RBM

是先用非监督方法进行训练,再用监督学习方法进行整个系统微调。

强化学习

学习系统在这里被称为智能体(agent),可以对环境进行观察,选择和执行动作,获得奖励(负奖励是惩罚)。然后它必须自己学习哪个是最佳方法(称为策略,policy),以得到长久的最大奖励。策略决定了智能体在给定情况下应该采取的行动。

批量和在线学习

Batch learning

在批量学习中,系统不能进行持续学习:必须用所有可用数据进行训练。这通常会占用大量
时间和计算资源,所以一般是线下做的。首先是进行训练,然后部署在生产环境且停止学
习,它只是使用已经学到的策略。这称为离线学习。

在线学习 Online Learning

在在线学习中,是用数据实例持续地进行训练,可以一次一个或一次几个实例(称为小批量)。每个学习步骤都很快且廉价,所以系统可以动态地学习到达的新数据。
在线学习很适合系统接收连续流的数据(比如,股票价格),且需要自动对改变作出调整。如果计算资源有限,在线学习是一个不错的方案:一旦在线学习系统学习了新的数据实例,它就不再需要这些数据了,所以扔掉这些数据(除非你想滚回到之前的一个状态,再次使用数据)。这样可以节省大量的空间。
在线学习算法也可以当机器的内存存不下大量数据集时,用来训练系统(这称作核外学习,out-of-core learning)。算法加载部分的数据,用这些数据进行训练,重复这个过程,直到用所有数据都进行了训练。
在线学习系统的一个重要参数是,它们可以多快地适应数据的改变:这被称为学习速率。如果你设定一个高学习速率,系统就可以快速适应新数据,但是也会快速忘记老数据(你可不想让垃圾邮件过滤器只标记最新的垃圾邮件种类)。相反的,如果你设定的学习速率低,系统的惰性就会强:即,它学的更慢,但对新数据中的噪声或没有代表性的数据点结果不那么敏感。

基于实例/基于模型的学习

基于实例 (Instance Based)

系统先用记忆学习案例,然后使用相似度测量推广到新的例子。

Model Based

从样本集进行归纳的方法是建立这些样本的模型,然后使用这个模型进行预测。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,723评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,003评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,512评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,825评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,874评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,841评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,812评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,582评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,033评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,309评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,450评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,158评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,789评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,409评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,609评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,440评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,357评论 2 352

推荐阅读更多精彩内容