Consumer配置

Property Default Description
roup.id 用来唯一标识consumer进程所在组的字符串,如果设置同样的group id,表示这些processes都是属于同一个consumer group
zookeeper.connect 指定zookeeper的连接的字符串,格式是hostname:port,此处host和port都是zookeeper server的host和port,为避免某个zookeeper 机器宕机之后失联,你可以指定多个hostname:port,使用逗号作为分隔:hostname1:port1,hostname2:port2,hostname3:port3</br>可以在zookeeper连接字符串中加入zookeeper的chroot路径,此路径用于存放他自己的数据,方式:hostname1:port1,hostname2:port2,hostname3:port3/chroot/path
consumer.id null 不需要设置,一般自动产生
socket.timeout.ms 30*1000 网络请求的超时限制。真实的超时限制是 max.fetch.wait+socket.timeout.ms
ocket.receive.buffer.bytes 64*1024 socket用于接收网络请求的缓存大小
fetch.message.max.bytes 1024*1024 每次fetch请求中,针对每次fetch消息的最大字节数。这些字节将会督导用于每个partition的内存中,因此,此设置将会控制consumer所使用的memory大小。这个fetch请求尺寸必须至少和server允许的最大消息尺寸相等,否则,producer可能发送的消息尺寸大于consumer所能消耗的尺寸。
num.consumer.fetchers 1 用于fetch数据的fetcher线程数
auto.commit.enable true 如果为真,consumer所fetch的消息的offset将会自动的同步到zookeeper。这项提交的offset将在进程挂掉时,由新的consumer使用
auto.commit.interval.ms 60*1000 consumer向zookeeper提交offset的频率
queued.max.message.chunks 2 用于缓存消息的最大数目,以供consumption。每个chunk必须和fetch.message.max.bytes相同
rebalance.max.retries 4 当新的consumer加入到consumer group时,consumers集合试图重新平衡分配到每个consumer的partitions数目。如果consumers集合改变了,当分配正在执行时,这个重新平衡会失败并重入
fetch.min.bytes 1 每次fetch请求时,server应该返回的最小字节数。如果没有足够的数据返回,请求会等待,直到足够的数据才会返回。
fetch.wait.max.ms 100 如果没有足够的数据能够满足fetch.min.bytes,则此项配置是指在应答fetch请求之前,server会阻塞的最大时间。
rebalance.backoff.ms 2000 在重试reblance之前backoff时间
refresh.leader.backoff.ms 200 在试图确定某个partition的leader是否失去他的leader地位之前,需要等待的backoff时间
auto.offset.reset largest zookeeper中没有初始化的offset时,如果offset是以下值的回应:smallest:自动复位offset为smallest的offsetlargest:自动复位offset为largest的offsetanything else:向consumer抛出异常
consumer.timeout.ms -1 如果没有消息可用,即使等待特定的时间之后也没有,则抛出超时异常
exclude.internal.topics true 是否将内部topics的消息暴露给consumer
paritition.assignment.strategy range 选择向consumer 流分配partitions的策略,可选值:range,roundrobin
client.id group id value 是用户特定的字符串,用来在每次请求中帮助跟踪调用。它应该可以逻辑上确认产生这个请求的应用
zookeeper.session.timeout.ms 6000 zookeeper 会话的超时限制。如果consumer在这段时间内没有向zookeeper发送心跳信息,则它会被认为挂掉了,并且reblance将会产生
zookeeper.connection.timeout.ms 6000 客户端在建立通zookeeper连接中的最大等待时间
zookeeper.sync.time.ms 2000 ZK follower可以落后ZK leader的最大时间
offsets.storage zookeeper 用于存放offsets的地点: zookeeper或者kafka
offset.channel.backoff.ms 1000 重新连接offsets channel或者是重试失败的offset的fetch/commit请求的backoff时间
offsets.channel.socket.timeout.ms 10000 当读取offset的fetch/commit请求回应的socket 超时限制。此超时限制是被consumerMetadata请求用来请求offset管理
offsets.commit.max.retries 5 重试offset commit的次数。这个重试只应用于offset commits在shut-down之间。
dual.commit.enabled true 如果使用“kafka”作为offsets.storage,你可以二次提交offset到zookeeper(还有一次是提交到kafka)。在zookeeper-based的offset storage到kafka-based的offset storage迁移时,这是必须的。对任意给定的consumer group来说,比较安全的建议是当完成迁移之后就关闭这个选项
partition.assignment.strategy range 在“range”和“roundrobin”策略之间选择一种作为分配partitions给consumer 数据流的策略; 循环的partition分配器分配所有可用的partitions以及所有可用consumer 线程。它会将partition循环的分配到consumer线程上。如果所有consumer实例的订阅都是确定的,则partitions的划分是确定的分布。循环分配策略只有在以下条件满足时才可以:(1)每个topic在每个consumer实力上都有同样数量的数据流。(2)订阅的topic的集合对于consumer group中每个consumer实例来说都是确定的。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容