转自http://www.trinea.cn/android/java-android-performance/
本文为Android性能优化的第三篇——Java(Android)代码优化。主要介绍Java代码中性能优化方式及网络优化,包括缓存、异步、延迟、数据存储、算法、JNI、逻辑等优化方式。(时间仓促,后面还会继续完善^_*)
目前性能优化专题已完成以下部分:
1、降低执行时间
这部分包括:缓存、数据存储优化、算法优化、JNI、逻辑优化、需求优化几种优化方式。
(1). 缓存
缓存主要包括对象缓存、IO缓存、网络缓存、DB缓存,对象缓存能减少内存的分配,IO缓存减少磁盘的读写次数,网络缓存减少网络传输,DB缓存较少Database的访问次数。
在内存、文件、数据库、网络的读写速度中,内存都是最优的,且速度数量级差别,所以尽量将需要频繁访问或访问一次消耗较大的数据存储在缓存中。
Android中常使用缓存:
a.线程池
b.Android图片缓存,Android图片Sdcard缓存,数据预取缓存
c. 消息缓存
通过handler.obtainMessage复用之前的message,如下:
1
handler.sendMessage(handler.obtainMessage(0,object));
e.网络缓存
数据库缓存http response,根据http头信息中的Cache-Control域确定缓存过期时间。
f. 文件IO缓存
使用具有缓存策略的输入流,BufferedInputStream替代InputStream,BufferedReader替代Reader,BufferedReader替代BufferedInputStream.对文件、网络IO皆适用。
g.layout缓存
h. 其他需要频繁访问或访问一次消耗较大的数据缓存
(2). 数据存储优化
包括数据类型、数据结构的选择。
a. 数据类型选择
字符串拼接用StringBuilder代替String,在非并发情况下用StringBuilder代替StringBuffer。如果你对字符串的长度有大致了解,如100字符左右,可以直接new StringBuilder(128)指定初始大小,减少空间不够时的再次分配。
64位类型如long double的处理比32位如int慢
使用SoftReference、WeakReference相对正常的强应用来说更有利于系统垃圾回收
final类型存储在常量区中读取效率更高
LocalBroadcastManager代替普通BroadcastReceiver,效率和安全性都更高
b. 数据结构选择
常见的数据结构选择如:
ArrayList和LinkedList的选择,ArrayList根据index取值更快,LinkedList更占内存、随机插入删除更快速、扩容效率更高。一般推荐ArrayList。
ArrayList、HashMap、LinkedHashMap、HashSet的选择,hash系列数据结构查询速度更优,ArrayList存储有序元素,HashMap为键值对数据结构,LinkedHashMap可以记住加入次序的hashMap,HashSet不允许重复元素。
HashMap、WeakHashMap选择,WeakHashMap中元素可在适当时候被系统垃圾回收器自动回收,所以适合在内存紧张型中使用。
Collections.synchronizedMap和ConcurrentHashMap的选择,ConcurrentHashMap为细分锁,锁粒度更小,并发性能更优。Collections.synchronizedMap为对象锁,自己添加函数进行锁控制更方便。
Android也提供了一些性能更优的数据类型,如SparseArray、SparseBooleanArray、SparseIntArray、Pair。
Sparse系列的数据结构是为key为int情况的特殊处理,采用二分查找及简单的数组存储,加上不需要泛型转换的开销,相对Map来说性能更优。不过我不太明白为啥默认的容量大小是10,是做过数据统计吗,还是说现在的内存优化不需要考虑这些东西,写16会死吗,还是建议大家根据自己可能的容量设置初始值。
(3). 算法优化
这个主题比较大,需要具体问题具体分析,尽量不用O(n*n)时间复杂度以上的算法,必要时候可用空间换时间。
查询考虑hash和二分,尽量不用递归。可以从结构之法 算法之道或微软、Google等面试题学习。
(4). JNI
Android应用程序大都通过Java开发,需要Dalvik的JIT编译器将Java字节码转换成本地代码运行,而本地代码可以直接由设备管理器直接执行,节省了中间步骤,所以执行速度更快。不过需要注意从Java空间切换到本地空间需要开销,同时JIT编译器也能生成优化的本地代码,所以糟糕的本地代码不一定性能更优。
这个优化点会在后面单独用一片博客介绍。
(5). 逻辑优化
这个不同于算法,主要是理清程序逻辑,减少不必要的操作。
(6). 需求优化
这个就不说了,对于sb的需求可能带来的性能问题,只能说做为一个合格的程序员不能只是执行者,要学会说NO。不过不能拿这种接口敷衍产品经理哦。
2、异步,利用多线程提高TPS
充分利用多核Cpu优势,利用线程解决密集型计算、IO、网络等操作。
关于多线程可参考:Java线程池
在Android应用程序中由于系统ANR的限制,将可能造成主线程超时操作放入另外的工作线程中。在工作线程中可以通过handler和主线程交互。
3、提前或延迟操作,错开时间段提高TPS
(1) 延迟操作
不在Activity、Service、BroadcastReceiver的生命周期等对响应时间敏感函数中执行耗时操作,可适当delay。
Java中延迟操作可使用ScheduledExecutorService,不推荐使用Timer.schedule;
Android中除了支持ScheduledExecutorService之外,还有一些delay操作,如
handler.postDelayed,handler.postAtTime,handler.sendMessageDelayed,View.postDelayed,AlarmManager定时等。
(2) 提前操作
对于第一次调用较耗时操作,可统一放到初始化中,将耗时提前。如得到壁纸wallpaperManager.getDrawable();
4、网络优化
以下是网络优化中一些客户端和服务器端需要尽量遵守的准则:
a. 图片必须缓存,最好根据机型做图片做图片适配
b. 所有http请求必须添加httptimeout
c. 开启gzip压缩
d. api接口数据以json格式返回,而不是xml或html
e. 根据http头信息中的Cache-Control及expires域确定是否缓存请求结果。
f. 确定网络请求的connection是否keep-alive
g. 减少网络请求次数,服务器端适当做请求合并。
h. 减少重定向次数
i. api接口服务器端响应时间不超过100ms
google正在做将移动端网页速度降至1秒的项目,关注中https://developers.google.com/speed/docs/insights/mobile