1. Handler,Looper,MessageQueue,Message他们的作用与关系
1.1Handler
Handler使您可以发送和处理[Message](https://developer.android.com/reference/android/os/Message)
与线程的关联的Runnable对象[MessageQueue](https://developer.android.com/reference/android/os/MessageQueue)
。每个Handler实例都与一个线程和该线程的消息队列关联。当您创建新的处理程序时,它会绑定到[Looper](https://developer.android.com/reference/android/os/Looper)
。它将消息和可运行对象传递到该Looper的消息队列,并在该Looper的线程上执行它们。
Handler有两个主要用途:(1)计划消息和可运行对象在将来的某个时刻执行;(2)使要在与您自己的线程不同的线程上执行的操作排队。
以上是官方翻译说明,Handler在我们平常的使用主要是用于异步消息通知,在子线程中通知主线程做什么事,比ui刷新,或者延时执行某个操作。
1.2Message
定义一条消息,其中包含可以发送到的描述和任意数据对象[Handler](https://developer.android.com/reference/android/os/Handler)
。该对象包含两个额外的int字段和一个额外的对象字段,在很多情况下,这些字段使您不必进行分配。
message是消息通知机制的载体,Handler发送的信息都在放在Message中。
1.3MessageQueue
Low-level class holding the list of messages to be dispatched by a [Looper](https://developer.android.com/reference/android/os/Looper)
. Messages are not added directly to a MessageQueue, but rather through [Handler](https://developer.android.com/reference/android/os/Handler)
objects associated with the Looper.
You can retrieve the MessageQueue for the current thread with [Looper#myQueue()](https://developer.android.com/reference/android/os/Looper#myQueue())
.
消息队列,Handler发送的消息都在它这管理,提供加入消息,和获取消息的方法
1.4Looper
用于为线程运行消息循环的类。默认情况下,线程没有与之关联的消息循环;要创建一个,请[prepare()](https://developer.android.com/reference/android/os/Looper#prepare())
在要运行循环的线程中调用 ,然后 [loop()](https://developer.android.com/reference/android/os/Looper#loop())
让它处理消息,直到循环停止为止。
与消息循环的大多数交互是通过 [Handler](https://developer.android.com/reference/android/os/Handler)
类进行的。
Looper可以理解为一个循环执行某个操作的类,这个类是和线程绑定的。它的循环操作就是不断的从MessageQueue中将可以发送的消息拿出来交给Handler处理
1.5他们之间的关系
- Handler发送消息 消息到哪了 ?到messageQueue了 Handler(sendMessage)=====message====>MessageQueue
- Handler 处理消息 消息哪来的? Looper执行它的循环拾取操作 MessageQueue======Message======>Handler(dispatch)
- Looper有一个MessageQueue消息队列;
- MessageQueue有一组待处理的Message;
- Message中有一个用于处理消息的Handler;
- Handler中有Looper和MessageQueue。
2.源码解析
2.1 Handler源码分析
Handler的创建,构造函数。这里讲解两个最重要的构造函数,其他的构造方法都是调用这两个,发送消息和处理消息的方法
/**
* 使用当前线程的Looper进行Handler的创建
* Use the {@link Looper} for the current thread with the specified callback interface
* and set whether the handler should be asynchronous.
* <p>
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
* <p>
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by {@link MessageQueue#enqueueSyncBarrier(long)}.
*
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
* @hide
*/
public Handler(@Nullable Callback callback, boolean async) {
//匿名类、内部类或本地类都必须申明为static,否则会警告可能出现内存泄露
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
//获取当前线程的looper对象,myLooper方法会在讲解Looper时进行说明
mLooper = Looper.myLooper();
if (mLooper == null) {//当我们在子线程中创建Handler,并使用该构造方法,就会报该错误,
// 平时在主线程中创建Handler时,已经在创建Activity时生成了mainLooper,所以不需要创建
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
//相关属性赋值,获取消息队列
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
/**
* 使用自己传入的Looper对象创建Handler
* Use the provided {@link Looper} instead of the default one and take a callback
* interface in which to handle messages. Also set whether the handler
* should be asynchronous.
* <p>
* Handlers are synchronous by default unless this constructor is used to make
* one that is strictly asynchronous.
* <p>
* Asynchronous messages represent interrupts or events that do not require global ordering
* with respect to synchronous messages. Asynchronous messages are not subject to
* the synchronization barriers introduced by conditions such as display vsync.
*
* @param looper The looper, must not be null.
* @param callback The callback interface in which to handle messages, or null.
* @param async If true, the handler calls {@link Message#setAsynchronous(boolean)} for
* each {@link Message} that is sent to it or {@link Runnable} that is posted to it.
* @hide
*/
@UnsupportedAppUsage
public Handler(@NonNull Looper looper, @Nullable Callback callback, boolean async) {
//相关属性赋值
mLooper = looper;
//获取消息队列
mQueue = looper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
结论:所以从构造方法我们就可以知道
- Handler中包含一个Looper,LooperQueue
- 消息发送分为同步,与异步,异步情况用的少
- looper分为自己传入,和Handler默认获取两种。
Handler的创建既然已经搞清楚了,就在看看它的消息发送功能,发送功能只分析比较重要的几个方法
sendMessageAtTime发送消息在某个时间点
/**
* 发送消息 在某个时间
* Enqueue a message into the message queue after all pending messages
* before the absolute time (in milliseconds) <var>uptimeMillis</var>.
* <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b>
* Time spent in deep sleep will add an additional delay to execution.
* You will receive it in {@link #handleMessage}, in the thread attached
* to this handler.
*
* @param uptimeMillis The absolute time at which the message should be
* delivered, using the
* {@link android.os.SystemClock#uptimeMillis} time-base.
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting. Note that a
* result of true does not mean the message will be processed -- if
* the looper is quit before the delivery time of the message
* occurs then the message will be dropped.
*/
public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;//获取消息队列
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);//加入消息到队列
}
getPostMessage,将Runable转换成Message,相当于可以发送一个Runable接口,又相当于将一段Runable中运行的代码到消息队列中,又相当于这段代码运行的线程是在Looper所在的线程中。
/**
* 将Runable转换成Message的方法
*
* @param r 传入一个Runable接口
* @return 返回一个Message对象
*/
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
sendMessageAtFrontOfQueue发送消息到队列头部
/**
* 发送一个消息到队列最前面 uptimeMillis传0 即可
* Enqueue a message at the front of the message queue, to be processed on
* the next iteration of the message loop. You will receive it in
* {@link #handleMessage}, in the thread attached to this handler.
* <b>This method is only for use in very special circumstances -- it
* can easily starve the message queue, cause ordering problems, or have
* other unexpected side-effects.</b>
*
* @return Returns true if the message was successfully placed in to the
* message queue. Returns false on failure, usually because the
* looper processing the message queue is exiting.
*/
public final boolean sendMessageAtFrontOfQueue(@NonNull Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
enqueueMessage,加入消息到队列
/**
* 加入消息到队列
* @param queue 消息队列
* @param msg 消息体
* @param uptimeMillis 发送时间
* @return 是否加入成功
*/
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
long uptimeMillis) {
msg.target = this;
msg.workSourceUid = ThreadLocalWorkSource.getUid();
if (mAsynchronous) {
msg.setAsynchronous(true); //设置消息是同步还是异步,这里可以看出,要么全是同步,要么全是异步
}
return queue.enqueueMessage(msg, uptimeMillis);//调用消息队列的enqueueMessage方法加入消息
}
Message的创建
/**
* Returns a new {@link android.os.Message Message} from the global message pool. More efficient than
* creating and allocating new instances. The retrieved message has its handler set to this instance (Message.target == this).
* If you don't want that facility, just call Message.obtain() instead.
*/
@NonNull
public final Message obtainMessage() {
return Message.obtain(this);
}
结论
- 各种sendMesssage方法最后都会调用到MessageQueue的enqueueMessage
- 可以将Runable封装成Message,并发送到Looper线程处理,也有与Runable匹配的各种sendMessage方法。
-Message的创建最好用Handler提供的obtainMessage()方法,这样创建的对象是从对象池中获取,减少开销。
下图是sendMessage的一个调用链,便于理解
Handler可以sendMessage还可以处理消息dispatchMessage接下来看看处理消息相关分析
/**
* Handle system messages here.
*/
public void dispatchMessage(@NonNull Message msg) {
if (msg.callback != null) {//如果msg的callBack不为空则交给handleCallback方法处理
handleCallback(msg);
} else {
if (mCallback != null) {//如果Handler的mCallback不为空,这交给mCallback处理
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);//都没人管交给Handler 的Handler处理
}
}
handleCallback
private static void handleCallback(Message message) {
message.callback.run();
}
handler的handleMessage方法
/**
* Subclasses must implement this to receive messages. 常用就是通过重写该方法实现消息处理逻辑
*/
public void handleMessage(@NonNull Message msg) {
}
Callback的上面已经写了就不说了。
2.2 Message源码分析
Message是消息传递的载体,可以理解成一个数据mode一样,下面来分析一下它的重要属性与重要方法,
重要属性,常用的传输数据,比如arg,data,what,等我就不做说明了
//每个Message持有发送Handler的引用,哪来干什么呢?当然是调用handler.dispatch来处理消息了
@UnsupportedAppUsage
/*package*/ Handler target;
//上节讲了,用于将callBack变成Message
@UnsupportedAppUsage
/*package*/ Runnable callback;
//这里next就代表一个链表,每个对象的next则指向它的下一个,当用于回收池时,next就指向下一个回收对象
// 当用于MessageQueue,就指向下一个需要处理的message。
// sometimes we store linked lists of these things
@UnsupportedAppUsage
/*package*/ Message next;
/**
* @hide 资源池的对象锁
*/
public static final Object sPoolSync = new Object();
//Message 池子
private static Message sPool;
//当前池子有的message数量
private static int sPoolSize = 0;
//池子最大值
private static final int MAX_POOL_SIZE = 50;
/**
* 回收Message是否进行安全检查,默认为真
*/
private static boolean gCheckRecycle = true;
重要方法
得到一个Message对象,其他几种方法都是调用这个方法得到message对象,并对Handler,callback,obj等属性赋值,就不说明。理解Mesage回收池是一个比较重要的地方,其中next的妙用,牛逼。
/**
* Return a new Message instance from the global pool. Allows us to
* avoid allocating new objects in many cases.
* 返回一个Message对象,从回收池中
*/
public static Message obtain() {
synchronized (sPoolSync) {
if (sPool != null) {//回收池不为空
Message m = sPool; //spool对象给m
sPool = m.next;//spool的next变为链表第一个位置
m.next = null;//m对象next置空
m.flags = 0; // clear in-use flag
sPoolSize--; //线程池-1
return m;//返回message对象
}
}
return new Message();
}
回收一个Message对象到回收池
/**
* 回收消息,当回收一个正在inUse的Message默认抛异常,gCheckRecycle默认为ture,5.0以前默认为false,以后默认为true,安全第一呀
* Return a Message instance to the global pool.
* <p>
* You MUST NOT touch the Message after calling this function because it has
* effectively been freed. It is an error to recycle a message that is currently
* enqueued or that is in the process of being delivered to a Handler.
* </p>
*
*/
public void recycle() {
if (isInUse()) {
if (gCheckRecycle) {
throw new IllegalStateException("This message cannot be recycled because it "
+ "is still in use.");
}
return;
}
recycleUnchecked();
}
/**
* 不安全的回收Message方法,可能会回收一个处于in-use的Message
* Recycles a Message that may be in-use.
* Used internally by the MessageQueue and Looper when disposing of queued Messages.
*/
@UnsupportedAppUsage
void recycleUnchecked() {
// Mark the message as in use while it remains in the recycled object pool.
// Clear out all other details.恢复相关属性到默认值
flags = FLAG_IN_USE;
what = 0;
arg1 = 0;
arg2 = 0;
obj = null;
replyTo = null;
sendingUid = UID_NONE;
workSourceUid = UID_NONE;
when = 0;
target = null;
callback = null;
data = null;
//这里说明一下,在完成一次回收后,sPool就变成刚刚回收的Message对象,而next就指向上一次的回收对象
synchronized (sPoolSync) {
if (sPoolSize < MAX_POOL_SIZE) {//回收池中数量小于Max才进行回收操作
next = sPool;//将当前线程池的Message对象赋值给next
sPool = this;//将需要回收的这个对象引用给回收池--至此回收完成,回收池数量+1,
sPoolSize++;
}
}
}
2.3 MessageQueue源码解析
在Handler 中我们分析到sendMesage 最后调用到MessageQueue的enqueueMessage方法,那我们从这个方法开始分析。
/**
* 向messageQueue message
*
* @param msg 加入的消息
* @param when 消息发送的时间
* @return 是否加入成功
*/
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {//说明必须要有target对象才能处理消息
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {//message正在处理,重复发送某个Message对象可能会出现这个问题
throw new IllegalStateException(msg + " This message is already in use.");
}
,
synchronized (this) {
if (mQuitting) {//正在退出,将该msg回收,加入消息失败
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();//标记当前msg正在使用中
msg.when = when;//赋值消息处理时间
Message p = mMessages;//这里的mMessage就是待处理的一个链表队列,
boolean needWake;
//当p为空 代表啥?代表该msg是MessageQueue队列收到的第一个消息,它还是空的,啥也没有
//when==0 代表啥?从前面可知 当uptimeMillis为0,即现在的when,表示要把它放在队列最前面,
//when<p.when 嘛意思? 意思很简单,我这个msg的执行时间比你p列表最前面的还要早,应该让我最先执行
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
//所以if成立的执行结果就很明显了,1.将msg对象放在链表的首位over~
msg.next = p;
mMessages = msg;
needWake = mBlocked;//是否需要唤醒
} else {//执行这个Block啥意思?就是msg肯定不在链表前面了该给他找个合适的位置了,排序操作,排序条件when,
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (; ; ) {//循环操作
prev = p;//链表交给prev
p = p.next;//链表的老二变老大
if (p == null || when < p.when) {//p==?啥意思,就是老二没有,循环结束 when<p.when啥意思?新的老二已经诞生了循环结束,哈哈
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
//msg可能是老二,老三。。。总之他去了该去的地方,一路走好~~~至此加入message完成
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
MessageQueue既然有了加入消息的方法,获取当前待处理的消息就必不可少了,接下来让我们看看MessageQueue的next方法如何提取消息
不看不知道,一看吓一跳,next方法比enqueueMessage方法复杂多了.难道不是
Message message=mMessages;
mMessages=mMessages.next;
这么简单吗,哈哈
@UnsupportedAppUsage
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;//native消息计数
if (ptr == 0) {
return null; //没有消息
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (; ; ) {//死循环
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {//当target为null,查询异步消息
// Stalled by a barrier. Find the next asynchronous message in the queue.找到异步消息,退出循环
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());//遍历msg获取到符合条件的异步消息
}
if (msg != null) {
if (now < msg.when) {//还没到消息发送时间,计算下一次执行的时间
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {//到时间了,找到了msg并返回
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {//正在退出,返回null
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
2.4Looper源码解析
Looper通过调用MessageQueue 的next方法获取到可以处理的message,并调用message.target.dispatch方法分发消息,完成消息处理最后的流程。接下来看看Looper的重要属性,与方法。
重要属性
// sThreadLocal.get() will return null unless you've called prepare().
//ThreadLocal简称TLS线程本地存储区域,用于线程存储信息,通过get,set方法,这里被用来存储looper对象
@UnsupportedAppUsage
static final ThreadLocal<Looper> sThreadLocal = new ThreadLocal<Looper>();
/**
* 主线程looperd对象
*/
@UnsupportedAppUsage
private static Looper sMainLooper; // guarded by Looper.class
private static Observer sObserver;
/**
* 消息队列,用于获取笑嘻嘻
*/
@UnsupportedAppUsage
final MessageQueue mQueue;
/**
* looper所在的线程
*/
final Thread mThread;
重要方法
Looper的创建
/**
* Looper初始化
* @param quitAllowed
*/
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {//一个线程只有一个Looper
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));//创建Looper并存储到TLS
}
Looper构造函数
private Looper(boolean quitAllowed) {//创建Pooper
mQueue = new MessageQueue(quitAllowed);//创建MessageQueue Looper是否允许退出
mThread = Thread.currentThread();//当前线程
}
获取存储的looper对象
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
* 从TLS中获取Looper对象
*/
public static @Nullable Looper myLooper() {
return sThreadLocal.get();
}
Loop方法循环拾取MessageQueue的Message,这里只取了关键代码部分,其他关于日志log的进行了删减
for (; ; ) {//又见死循环
Message msg = queue.next(); // might block 从Messagequeue中获取message
if (msg == null) {//没有可以处理的消息,返回
// No message indicates that the message queue is quitting.
return;
}
msg.target.dispatchMessage(msg);//分发消息
msg.recycleUnchecked();//消息分发完成,进行回收处理
}
}
Looper的queit方法
public void quit() {
mQueue.quit(false);//安全退出
}
public void quitSafely() {
mQueue.quit(true);不安全退出
}
MessageQueue的退出方法
//
void quit(boolean safe) {
//当mQuitAllowed为false表示不能退出
if (!mQuitAllowed) {
throw new IllegalStateException("Main thread not allowed to quit.");
}
synchronized (this) {
if (mQuitting) {//如果正在退出返回
return;
}
mQuitting = true;
if (safe) {
removeAllFutureMessagesLocked();//移除所有未处理的消息
} else {
removeAllMessagesLocked();//移除所有消息,包括处理中的
}
// We can assume mPtr != 0 because mQuitting was previously false.
nativeWake(mPtr);
}
}
总结:Handler(sendMessage)message=========>MessageQueue======>Loop(取出消息)=====》Handler (dispatchMessage)就分析完毕
到这里Java层的Handler的消息机制差不多就清晰了。下面贴一张关系图便于理解。