AB测试知多少

1.什么是AB测试?

互联网效果广告的主要特点之一是可量化,即广告系统的所有业务指标都是可以计算并通过数字进行展示的。因此,想要通过业务指标来表示广告系统的迭代效果。在全量上线前确认迭代的结果,通用的方法是采用AB实验。

A/B实验的本质是分离式组间试验,也叫对照试验,在科研领域中已被广泛应用(它是药物测试的最高标准)。自2000年谷歌工程师将这一方法应用在互联网产品以来,A/B测试在国外越来越普及,已逐渐成为互联网产品运营精细度的重要体现。

简单来说,A/B测试在产品优化中的应用方法是:在产品正式迭代发版之前,为同一个目标制定两个(或以上)方案,将用户流量对应分成几组,在保证每组用户特征相同的前提下,让用户分别看到不同的方案设计,根据几组用户的真实数据反馈,科学的帮助产品进行决策(如下图)。


A/B测试的应用方式决定了它拥有的三大特性:先验性、并行性和科学性

先验性:

A/B测试其实是一种“先验”的试验体系,属于预测型结论,与“后验”的归纳性结论差别巨大。同样是用数据统计与分析版本的好坏,以往的方式是先将版本发布,再通过数据验证效果,而A/B 测试却是通过科学的试验设计、采样样本代表性、流量分割与小流量测试等方式来获得具有代表性的试验结论,这样就可以用很少的样本量就能推广到全部流量可信。

并行性:

A/B测试是将两个或以上的方案同时在线试验,这样做的好处在于保证了每个版本所处环境的一致性,便于更加科学客观地对比优劣。同时,也节省了验证的时间,无需在验证完一个版本之后再测试另一个。

科学性:

这里强调的是流量分配的科学性。A/B 测试的正确做法,是将相似特征的用户均匀的分配到试验组中,确保每个组别的用户特征的相似性,从而避免出现数据偏差,使得试验的结果更有代表性。

下面列出了A/B 测试的常见的4个误区:

误区一: 轮流展现不同版本

首先需要明确,这种做法不是真正意义上的A/B测试。而这一现象,经常出现在如今的广告投放的环节。广告主为了提升着陆页的转化率,会选择将不同的广告版本进行轮流投放展示。但这一做法并不能保证每个版本所处的环境相同,例如选在工作日的晚七点黄金档和下午三点时段,受众群体会有明显区别,以至于最终效果是否有差异,甚至导致效果不同的原因是很难下定论的。

正确做法: 不同版本方案并行上线试验,尽可能的降低所有版本的测试环境差别。

误区二:选择不同应用市场投放(随机选取用户测试)

对于一些已经意识到数据先验重要性的企业来说,为了验证新版本对于用户使用真实影响,可能会选择将不同版本打包,分别投放到不同的应用市场,当发现其中某版本的数据表现的最好,就决定将该版本全量上线。更有甚者,会随机选取一部分用户(甚至是公司内部人员)进行前期试用,根据数据反馈决定迭代版本。这都违背了A/B测试的科学流量分配的原则,很容易造成辛普森悖论(即某个条件下的两组数据,分别讨论时都会满足某种性质或趋势,可一旦合并起来考虑,却可能导致相反的结论)。

正确做法: 科学的进行流量分配,保证每个试验版本的用户特征相类似。

误区三:让用户自主选择版本

不少企业会在新版的页面上留下返回老版本的入口,让用户自主选择使用哪一版,通过收集返回按钮的点击率来判断最佳版本。但该思路不利于统计分析用户在新版的行为数据,因为用户离开新版本可能单纯是因为习惯使用老版本,而不是认为新版本的体验不好,最终导致了试验结果的不准确。

正确做法: 让用户展现对不同版本的真实使用体验,应实时关注各版本的数据表现,并根据数据反馈及时调整试验流量。

误区四:对试验结果的认知和分析过浅

这一误区又包括了两个不同的内容:其一,认为只有当试验版本结果优于原始版本时,试验才算成功。事实上,A/B 测试是用于选择最佳版本的工具。试验可能出现的结果分为三种:试验版本有提升(试验版本最佳)、无明显差异(两版本均可)、试验版本的表现比原始版本糟糕(原始版本最佳),这三种结果其实都说明了试验的成功。

其二,单从试验的整体数据结果,就推论所有场景的表现效果。例如,当A/B测试的结果表明试验版本的数据差于原始版本时,就认定所有的地区或渠道的效果都是负面的。但如果细分每个版本中不同浏览器的数据,可能会发现:由于某一浏览器的明显劣势,导致整体试验数据不佳。因此,不要只专注于试验数据的整体表现,而忽略了细分场景下可能导致的结果偏差。

正确做法: 在分析试验整体数据的同时,需要从多个维度细分考量试验数据结果。

2. AB测试可以用在哪里 ?

尽管A/B 测试可以弥补产品优化中遇到的不足,但它并不完全适用于所有的产品。因为A/B 测试的结果需要大量数据支撑,日流量越大的实验得出结果越准确。通常来说,我们建议在进行A/B测试时,能够保证 每个版本的日流量在5000个UV以上 ,否则试验周期将会很长,或很难获得准确(结果收敛)的数据结果推论。

说完什么样的产品适合用A/B 测试,接下来我们将从优化内容和应用场景两个方面说明A/B测试可以用在哪些地方,希望能给你一些启发。

UI/文案内容/页面布局

利用A/B 测试优化活动交互UI、素材创意、落地页等,用清晰的数据指标来验证交互体验和视觉感受的提升效果。

产品功能

想给产品增加一个新功能,可是很难确定是否能达到数据上的预期,如果盲目上线,可能会造成一些损失。使用A/B 测试,可以验证功能的效果。

推荐算法

包括基于内容的推荐算法(根据用户的历史记录推荐相似内容)、基于协同过滤的推荐算法(根据有相似兴趣用户的行为推荐相关内容)、基于关联规则的推荐算法(根据内容本身的相关性给用户推荐),都可以通过A/B实验来验证新版本的效果优劣。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容