布隆过滤器(bloom filter)

[TOC]

布隆过滤器的思想 -- 不追求完美

在quora上,有个问题问,人们最常犯的错误是哪些,其中一个就是追求完美。
在it领域,为了让系统完美化,比如之前涉及存储系统,去重时想达到完美的标准,花的代价是2小时,如果稍加改动,可以让代价降低到1分钟左右,只有本来的百分之一不到。

布隆过滤器的思想,也是如此。

布隆过滤器的应用 - 使用案例

squid

squid里的cache digests 用的是布隆过滤器

chrom

chrom里判断恶意链接,也是用的布隆过滤器

hbase里也用了bloom filter

如图
bloom filter在hbase里的用法比较有意思,它先判断大小,再做bf,这样能让查询速度加快几十倍

布隆过滤器的缺点和改进

缺点

布隆过滤器的缺点是错判,就是说,不在里面的,可能判断成在里面,但是在里面的,一定不会错,而且,无法删除

改进

改进1 多bit

bloom filter其实就是bitmaq的改进,bitmap是单个hash,而bf是多个hash,本质上,都是一个bit只能存有或者没有两种状态
可以考虑用多bit记录的方式,这种方法,就是本来每个bit不是0就是1,现在可以记录其它的,如果add一个元素,把对应bit的数字加1即可
如果要del一个元素,对应位置的数字减1即可
好处是,可以删除元素
缺点是,可能会有位溢出,另外,错判还是会发生,速度也慢了

改进2 白名单

还有种改进方式是对一些常见的url加到白名单里
这种改进是不错的选择,对于某些不考虑过滤的url,可以先判断一下,剩下的url错判就错判,对结果影响是可以接受

布隆过滤器的细节 - 算法的实现

下面用pybloom演示一下布隆过滤器的用法

from pybloom import BloomFilter
from pybloom import benchmarks
f = BloomFilter(capacity=100000, error_rate=0.1)
# [f.add(x) for x in range(102)]
[f.add(x) for x in range(1001)]

for x in range(1001, 100000000):
    if x in f:
        print x

可以看出,布隆过滤器,还是比较高效的一种数据结构

布隆过滤器的实践 - 爬虫应用

布隆过滤器比较麻烦的一点是无法删除,爬虫是增量型的,不可能永远爬下去,浪费资源,也没那么多空间
如果,每周一起一个bllomfilter,听起来不错,但是你周一的时候,周一爬虫看的那些url之前的就没法儿过滤了
有个折中的办法是爬虫运行时候,用一个布隆过滤器bf1,爬虫读取页面的时候,把时间也过一下,只爬取当天以及三天以内的数据,然后在每周四起一个新的布隆过滤器bf2
写的时候,写两份,一份到bf2,一份到bf1
每周一开始,bf1就停掉,换用bf2作为查重的bloomfilter,周而复始,就可以了

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容