ChAMP 分析甲基化芯片数据-归一化篇

champ.norm 函数提供了归一化的功能,支持下列4种归一化的算法:

  1. BMIQ
  2. PBC
  3. SWAN
  4. FunctionalNormalization

其中BMIQ和PBC 算法都是只针对探针的beta 矩阵进行归一化,而SWAN和FunctionalNormalization则需要在数据导入阶段采用minfi的算法。
函数用法示例

myNorm <- champ.norm()
[===========================]
[>>>>> ChAMP.NORM START <<<<<<]
champ.norm Results will be saved in ./CHAMP_Normalization/
[ SWAN method call for BOTH rgSet and mset input, FunctionalNormalization call for rgset only , while PBC and BMIQ only needs beta value. Please set parameter correctly. ]
<< Normalizing data with BMIQ Method >>
Note that,BMIQ function may fail for bad quality samples (Samples did not even show beta distribution).
3 cores will be used to do parallel BMIQ computing.
[>>>>> ChAMP.NORM END <<<<<<]
[===========================]
[You may want to process champ.SVD() next.]

对于这个函数,有几个关键参数需要调整

method

method 参数指定归一化的算法,可选值包括BMIQ, PBC, SWAN, FunctionalNormalization, 默认值为BMIQ

arraytype

arraytype 指定芯片类型,可选值包括450KEPIC, 默认值为450K
对于实际的数据,首先根据芯片类型设置arraytype 参数,然后调整method参数,选择对应的归一化算法。

归一化的本质,是对探针的beta 值进行校正,使得重复样本之间的beta值分布更加的接近,减少重复样本间的差异。

同一批数据用不同的归一化算法处理的结果如下

归一化之前的beta 值

> head(myLoad$beta[,1:2])
          NA17105-M_Rep1  A431_Rep1
cg00000957     0.83336578 0.89863953
cg00001349     0.89693013 0.91727435
cg00001583     0.31668180 0.89555041
cg00002028     0.03069992 0.07360386
cg00002719     0.04955457 0.96706172
cg00003202     0.01592223 0.02398773

SWAN归一化之后的beta 值

> myNorm <- champ.norm(method=”SWAN”)
> head(myNorm[,1:2])
          NA17105-M_Rep1  A431_Rep1
cg00000957     0.78674711 0.85207202
cg00001349     0.85706454 0.87576751
cg00001583     0.30066157 0.85079557
cg00002028     0.03740574 0.07020499
cg00002719     0.05894663 0.95375422
cg00003202     0.01998307 0.02665266

FunctionalNormalization归一化之后的beta 值

> myNorm <- champ.norm(method=”FunctionalNormalization”)
> head(myNorm[,1:2])
          NA17105-M_Rep1   A431_Rep1
cg00000957     0.90190549 0.878153237
cg00001349     0.94130604 0.903431781
cg00001583     0.43190955 0.884323706
cg00002028     0.10881798 0.036831578
cg00002719     0.19784471 0.943513834
cg00003202     0.05519015 0.008457334

PBC 归一化之后的beta值

> myNorm <- champ.norm(method=”PBC”)
> head(myNorm[,1:2])
          NA17105-M_Rep1  A431_Rep1
cg00000957     0.83336578 0.89863953
cg00001349     0.89693013 0.91727435
cg00001583     0.31668180 0.89555041
cg00002028     0.03069992 0.07360386
cg00002719     0.04955457 0.96706172
cg00003202     0.01592223 0.02398773

BMIQ 归一化之后的beta值

> myNorm <- champ.norm(method=”BMIQ”)
> head(myNorm[,1:2])
          NA17105-M_Rep1  A431_Rep1
cg00000957     0.83336578 0.89863953
cg00001349     0.89693013 0.91727435
cg00001583     0.31668180 0.89555041
cg00002028     0.03069992 0.07360386
cg00002719     0.04955457 0.96706172
cg00003202     0.01592223 0.02398773

对比归一化前后的结果可以看出,beta值发生了变化,其中SWANFunctionalNormalization对于原始beta值的调整比较大,可以很明显的看到归一化前后的差别。

BMIQPBC 算法对beta值调整的幅度很小,如果直接看数字,是看不出差别的,可能是小数点后十几位有区别。总而言之,归一化前后,发生变化的就是beta 值。

当数据归一化之后,就可以进行后续的差异分析了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,402评论 6 499
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,377评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,483评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,165评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,176评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,146评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,032评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,896评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,311评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,536评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,696评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,413评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,008评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,815评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,698评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,592评论 2 353

推荐阅读更多精彩内容