深度学习框架之paddlepaddle

官网地址:https://www.paddlepaddle.org.cn/

码云仓库:https://gitee.com/paddlepaddle/Paddle

简介

飞桨(PaddlePaddle)以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。目前,飞桨累计开发者265万,服务企业10万家,基于飞桨开源深度学习平台产生了34万个模型。飞桨助力开发者快速实现AI想法,快速上线AI业务。帮助越来越多的行业完成AI赋能,实现产业智能化升级。

那么,PaddlePaddle 有什么特点?

支持多种深度学习模型 DNN(深度神经网络)、CNN(卷积神经网络)、 RNN(递归神经网络),以及 NTM 这样的复杂记忆模型。

基于 Spark,与它的整合程度很高。

支持 Python 和 C++ 语言。

支持分布式计算。作为它的设计初衷,这使得 PaddlePaddle 能在多 GPU,多台机器上进行并行计算。

相比现有深度学习框架,PaddlePaddle 对开发者来说有什么优势?

首先,是易用性。

相比偏底层的谷歌 TensorFlow,PaddlePaddle 的特点非常明显:它能让开发者聚焦于构建深度学习模型的高层部分。项目负责人徐伟介绍:

“在 PaddlePaddle 的帮助下,深度学习模型的设计如同编写伪代码一样容易,设计师只需关注模型的高层结构,而无需担心任何琐碎的底层问题。未来,程序员可以快速应用深度学习模型来解决医疗、金融等实际问题,让人工智能发挥出最大作用。”

抛开底层编码,使得 TensorFlow 里需要数行代码来实现的功能,可能在 PaddlePaddle 里只需要一两行。徐伟表示,用 PaddlePaddle 编写的机器翻译程序只需要“其他”深度学习工具四分之一的代码。这显然考虑到该领域广大的初入门新手,为他们降低开发机器学习模型的门槛。这带来的直接好处是,开发者使用 PaddlePaddle 更容易上手。

其次,是更快的速度。

如上所说,PaddlePaddle 上的代码更简洁,用它来开发模型显然能为开发者省去一些时间。这使得 PaddlePaddle 很适合于工业应用,尤其是需要快速开发的场景。

另外,自诞生之日起,它就专注于充分利用 GPU 集群的性能,为分布式环境的并行计算进行加速。这使得在 PebblePebble 上,用大规模数据进行 AI 训练和推理可能要比 TensorFlow 这样的平台要快很多。

说到这里,业内对  PaddlePaddle 怎么看?

首先不得不提的是 Caffe,许多资深开发者认为 PaddlePaddle 的设计理念与 Caffe 十分相似,怀疑是百度对标 Caffe 开发出的替代品。这有点类似于谷歌 TensorFlow 与 Thano 之间的替代关系。

知乎上,Caffe 的创始人贾杨清对 PaddlePaddle 评价道:

"很高质量的 GPU 代码"

"非常好的 RNN 设计"

"设计很干净,没有太多的 abstraction,这一点比 TensorFlow 好很多"

"设计思路有点老"

"整体的设计感觉和 Caffe ‘心有灵犀’,同时解决了 Caffe 早期设计当中的一些问题”

最后,贾表示 PaddlePaddle 的整体架构功底很深,是下了功夫的。这方面,倒是赢得了开发者的普遍认同。

总结起来,业内对 PaddlePaddle 的总体评价是“设计干净、简洁,稳定,速度较快,显存占用较小”。

但是,具有这些优点,不保证 PaddlePaddle 就一定能在群雄割据的机器学习开源世界占有一席之地。有国外开发者表示, PaddlePaddle 的最大优点是快。但是,比 TensorFlow 快的开源框架其实有很多:比如 MXNet,Nervana System 的 Neon,以及三星的 Veles,它们也都对分布式计算都很好的支持,但都不如 TensorFlow 普及程度高。这其中有 TensorFlow 庞大用户基础的原因,也得益于谷歌自家 AI 系统的加持。

百度的 AI 产品能够对普及 PaddlePaddle 产生多大的帮助,尚需观察。雷锋网获知,它已经应用于百度旗下的多项业务。百度表示:

“PaddlePaddle 已在百度 30 多项主要产品和服务之中发挥着巨大的作用,如外卖的预估出餐时间、预判网盘故障时间点、精准推荐用户所需信息、海量图像识别分类、字符识别(OCR)、病毒和垃圾信息检测、机器翻译和自动驾驶等领域。”

最后,我们来看看对于自家推出的 PaddlePaddle,李彦宏怎么说:

“经过了五六年的积累,PaddlePaddle 实际上是百度深度学习算法的引擎,把源代码开放出来,让同学们、让社会上所有的年轻人能够学习,在它的基础上进行改进,我相信他们会发挥出来他们的创造力,去做到很多我们连想都没有想过的东西。”

安装

安装最新稳定版本:

# CPU

pip install paddlepaddle

# GPU

pip install paddlepaddle-gpu

更多安装信息详见官网安装说明

PaddlePaddle用户可领取免费Tesla V100在线算力资源,训练模型更高效。每日登陆即送12小时连续五天运行再加送48小时前往使用免费算力

四大领先技术

开发便捷的产业级深度学习框架

飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,符合他们的开发习惯。同时支持声明式和命令式编程,兼具开发的灵活性和高性能。网络结构自动设计,模型效果超越人类专家。

支持超大规模深度学习模型的训练

飞桨突破了超大规模深度学习模型训练技术,实现了支持千亿特征、万亿参数、数百节点的开源大规模训练平台,攻克了超大规模深度学习模型的在线学习难题,实现了万亿规模参数模型的实时更新。查看详情

多端多平台部署的高性能推理引擎

飞桨不仅兼容其他开源框架训练的模型,还可以轻松地部署到不同架构的平台设备上。同时,飞桨的推理速度也是全面领先的。尤其经过了跟华为麒麟NPU的软硬一体优化,使得飞桨在NPU上的推理速度进一步突破。查看详情

面向产业应用,开源开放覆盖多领域的工业级模型库。

飞桨官方支持100多个经过产业实践长期打磨的主流模型,其中包括在国际竞赛中夺得冠军的模型;同时开源开放200多个预训练模型,助力快速的产业应用。查看详情

飞桨产品全景

使用场景概览

模型库

覆盖图像、自然语言处理、推荐等多种方向的官方模型GitHub Gitee 安装飞桨 

应用案例

飞桨源于产业实践,始终致力于与产业深入融合。目前飞桨已广泛应用于工业、农业、服务业等,服务 265万开发者,与合作伙伴一起帮助越来越多的行业完成 AI 赋能。

文档

我们提供英文中文文档

使用指南

或许您想从深度学习基础开始学习飞桨

应用实践

API Reference

新的API支持代码更少更简洁的程序

拓展

BAT机器学习开源平台:PaddlePaddle,Angel,DTPAI

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容