分水岭分割算法(WaterShed)

1.watershed算法原理

所有的灰度图像都可视为拓扑平面,灰度值高的区域看成山峰,灰度值低的区域看成山谷,我们向图像上所有的"山谷"注入不同颜色的水,不断的注水,水位则不断上升,注入的水将灌满山谷,并可能淹没山峰,为了防止不同颜色的山谷中的水溢出汇合,我们可在汇合的地方筑起堤坝,故可将堤坝看作是对图像的分割后形成的边界,

image.png

image.png
image.png
image.png

2.常规分水岭分割算法缺点

常规的分水岭算法由于图像上噪声和图局部不连续原因常常表现出过度分割

image.png

3.标记控制的分水岭分割(Marker-controlled watershed)

由于噪声的存在以及连接物体的特点,传统的标记分水岭算法对包含连接物体的灰度图像很难取得满意的分割结果;特别是在背景并不连通的情况下,误分割更为常见;在标记分水岭算法的基础上,提出了一种连接物体分割方法;将属于鲁棒统计的Hough变换用于提取物体标记扩展了标记分水岭算法的应用范围;针对在分割连接物体时,由于背景并非连通,因此允许背景被分别标记,并通过一个后续滤波步骤用以剔除分割后图像中的背景部分,从而得到精确的分割图像;试验证明该算法运算速度快,鲁棒性好,具有广泛的应用价值。

参考:
http://cmm.ensmp.fr/~beucher/wtshed.html
http://cmm.ensmp.fr/~beucher/prometheus.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容

  • 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘...
    大川无敌阅读 13,840评论 0 29
  • 理论 任意的灰度图像可以被看做是地质学表面,高亮度的地方是山峰,低亮度的地方是山谷。给每个孤立的山谷(局部最小值)...
    xxxss阅读 30,566评论 4 55
  • 1、阈值分割 1.1 简介 图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成...
    木夜溯阅读 22,579评论 9 15
  • http://blog.csdn.net/x454045816/article/details/52153250 ...
    G风阅读 7,046评论 0 1
  • 今天你破天荒的和我说话了,你一定从知道我兴奋的时候心中其实是多么的落失。 “这一生,我都是你坚强的后盾!我们一起加...
    听雨来的故事阅读 239评论 0 0