SparkShuffer机制(三)

什么是shuffer

  • 宽依赖之间会划分stage,而Stage之间就是Shuffle

Spark在DAG调度阶段会将一个Job划分为多个Stage,上游Stage做map工作,下游Stage做reduce工作,其本质上还是MapReduce计算框架。Shuffle是连接map和reduce之间的桥梁,它将map的输出对应到reduce输入中,这期间涉及到序列化反序列化、跨节点网络IO以及磁盘读写IO等,所以说Shuffle是整个应用程序运行过程中非常昂贵的一个阶段,理解Spark Shuffle原理有助于优化Spark应用程序。

在DAG阶段以shuffle为界,划分stage,上游stage做map task,每个map task将计算结果数据分成多份,每一份对应到下游stage的每个partition中,并将其临时写到磁盘,该过程叫做shuffle write;下游stage做reduce task,每个reduce task通过网络拉取上游stage中所有map task的指定分区结果数据,该过程叫做shuffle read,最后完成reduce的业务逻辑。

  • 基于Hash的Shuffle实现
[图片上传中...(基于sort.png-1f824d-1617770072575-0)]
  • 基于Sort的Shuffle实现(现在采用的机制)
基于sort.png
1.2之前是HashShuffleManager

1.2版本之前这时候每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是M R ,其中M是Map的个数,R是Reduce的个数。这样会产生大量的小文件,对文件系统压力很大,而且也不利于IO吞吐量。后面忍不了了就做了优化,把在同一core上运行的多个Mapper 输出的合并到同一个文件,这样文件数目就变成了 cores R 个了

2.1版本 分为三种writer机制, 分为 BypassMergeSortShuffleWriter, SortShuffleWriter 和 UnsafeShuffleWriter。

图片1 (2).png

-上面是使用哪种 writer 的判断依据, 是否开启 mapSideCombine 这个判断,是因为有些算子会在 map 端先进行一次 combine, 减少传输数据。

-因为 BypassMergeSortShuffleWriter 会临时输出Reducer个(分区数目)小文件,所以分区数必须要小于一个阀值,默认是小于200。

-UnsafeShuffleWriter需要Serializer支持relocation,Serializer支持relocation:原始数据首先被序列化处理,并且再也不需要反序列,在其对应的元数据被排序后,需要Serializer支持relocation,在指定位置读取对应数据。

BypassMergeSortShuffleWriter 实现细节

BypassMergeSortShuffleWriter和Hash Shuffle中的HashShuffleWriter实现基本一致, 唯一的区别在于,map端的多个输出文件会被汇总为一个文件。 所有分区的数据会合并为同一个文件,会生成一个索引文件,是为了索引到每个分区的起始地址,可以随机 access 某个partition的所有数据。

SortShuffleWriter 实现细节

我们可以先考虑一个问题,假如我有 100亿条数据,但是我们的内存只有1M,但是我们磁盘很大, 我们现在要对这100亿条数据进行排序,是没法把所有的数据一次性的load进行内存进行排序的,这就涉及到一个外部排序的问题,我们的1M内存只能装进1亿条数据,每次都只能对这 1亿条数据进行排序,排好序后输出到磁盘,总共输出100个文件,最后怎么把这100个文件进行merge成一个全局有序的大文件。我们可以每个文件(有序的)都取一部分头部数据最为一个 buffer, 并且把这 100个 buffer放在一个堆里面,进行堆排序,比较方式就是对所有堆元素(buffer)的head元素进行比较大小, 然后不断的把每个堆顶的 buffer 的head 元素 pop 出来输出到最终文件中, 然后继续堆排序,继续输出。如果哪个buffer 空了,就去对应的文件中继续补充一部分数据。最终就得到一个全局有序的大文件。

如果你能想通我上面举的例子,就差不多搞清楚sortshufflewirter的实现原理了,因为解决的是同一个问题。

SortShuffleWriter 中的处理步骤就是

使用 PartitionedAppendOnlyMap 或者 PartitionedPairBuffer 在内存中进行排序, 排序的 K 是(partitionId, hash(key)) 这样一个元组。

如果超过内存 limit, 我 spill 到一个文件中,这个文件中元素也是有序的,首先是按照 partitionId的排序,如果 partitionId 相同, 再根据 hash(key)进行比较排序

如果需要输出全局有序的文件的时候,就需要对之前所有的输出文件 和 当前内存中的数据结构中的数据进行 merge sort, 进行全局排序

和我们开始提的那个问题基本类似,不同的地方在于,需要对 Key 相同的元素进行 aggregation, 就是使用定义的 func 进行聚合, 比如你的算子是 reduceByKey(+), 这个func 就是加法运算, 如果两个key 相同, 就会先找到所有相同的key 进行 reduce(+) 操作,算出一个总结果 Result,然后输出数据(K,Result)元素。

SortShuffleWriter 中使用 ExternalSorter 来对内存中的数据进行排序,ExternalSorter内部维护了两个集合PartitionedAppendOnlyMap、PartitionedPairBuffer, 两者都是使用了 hash table 数据结构, 如果需要进行 aggregation, 就使用 PartitionedAppendOnlyMap(支持 lookup 某个Key,如果之前存储过相同key的K-V 元素,就需要进行 aggregation,然后再存入aggregation后的 K-V), 否则使用 PartitionedPairBuffer(只进行添K-V 元素),

1.2之后是SortShuffleManager
  • 创建磁盘文件上的区别在SHUFFER上游阶段进行两个机制从而减少临时文件的产生。

  • shuffleFileGroup机制在上游的每一个Group磁盘文件的数量与下游stage的task数量是相同的

  • consolidate机制允许不同的task复用同一批磁盘文件,这样就可以有效将多个task的磁盘文件进行一定程度上的合并,从而大幅度减少磁盘文件的数量

主要区别: SortShuffleManager
  • 在上游通过两个机制改变产生的临时文件数.

Shuffle阶段划分:

shuffle write:mapper阶段,上一个stage得到最后的结果写出
  • SortShuffle-write普通机制
  1. 排序,先写入5M的内存模型(Map or Aaary),不够在申请,排序是根据kyro序列化支持排序的序列化
根据公式
applyMemory=nowMenory*2-oldMemory
申请的内存=当前的数据内存情况*2-上一次的内嵌情况
  1. 溢写,通过JAVA的流写入磁盘BufferedOutputStream, 默认默认的batch数量是10000条.

  2. merge,一个task将所有数据写入内存数据结构的过程中,会发生多次磁盘溢写操作,也就会产生多个临时文件。最后会将之前所有的临时磁盘文件都进行合并成1个磁盘文件,这就是merge过程,此时会将之前所有临时磁盘文件中的数据读取出来,然后依次写入最终的磁盘文件之中。此外,由于一个task就只对应一个磁盘文件,也就意味着该task为Reduce端的stage的task准备的数据都在这一个文件中. 还包括一个索引文件 记录这
    标识了下游各个task的数据在文件中的start offset与end offset。

  • bypassShuffle-write机制(不排序)
shuffle read :reduce阶段,下一个stage拉取上一个stage进行合并

触发条件:

  1. shuffle map task数量小于spark.shuffle.sort.bypassMergeThreshold=200参数的值。

  2. 不是聚合类的shuffle算子(比如reduceByKey)。

  • 也是根据KEY 的hash取余来写入磁盘,跟未经优化的HashShuffleManager是一样,只是最后做了带索引的文件跟合并文件, 也是有 溢写跟merge

  • 磁盘写机制不同,第二不会进行排序

  • UnsafeShuffle-write机制满足条件.

  1. 先序列化在排序机制,可以序列化排序,
  2. kryo排序& partition数量不能大于指定阙值2的24次方.因为partition number使用的是24bit.
  3. 一般满足上述条件才会执行,


    1617505599.png

    1617505971(1).png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,270评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,489评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,630评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,906评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,928评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,718评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,442评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,345评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,802评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,984评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,117评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,810评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,462评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,011评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,139评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,377评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,060评论 2 355

推荐阅读更多精彩内容