OpenPose训练过程解析(7)

总结

DataLayerSetUp

首先,cpm_data_layer.cpp调用DataLayerSetUp函数设置层参数

template <typename Dtype>
void CPMDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top)

transformed_label_在这里被Reshape为以下维度,其中num_parts为56

this->transformed_label_.Reshape(1, 2*(num_parts+1), height/stride, width/stride);  //Line:91

load_batch

接下来调用load_batch函数,

template<typename Dtype>
void CPMDataLayer<Dtype>::load_batch(Batch<Dtype>* batch)

Transform函数未调用

因为 datum.encoded() = false(encoded详见训练过程(4))

if (datum.encoded()) {
      this->cpm_data_transformer_->Transform(cv_img, &(this->transformed_data_));
    }

Transform_nv

调用Transform_nv函数

else {
      this->cpm_data_transformer_->Transform_nv(datum,   //Datum& datum: 应该为读入的数据
        &(this->transformed_data_),  //this->transformed_data_.set_cpu_data(top_data + offset_data);
        &(this->transformed_label_), cnt);  //this->transformed_label_.set_cpu_data(top_label + offset_label);
      ++cnt;  //cnt在batch_size  for循环外初始值为0,for循环内自增1
    }
template<typename Dtype> void CPMDataTransformer<Dtype>::Transform_nv(const Datum& datum, Dtype* transformed_data, Dtype* transformed_label, int cnt)

ReadMetaData(meta, data, offset3, offset1); //data = datum.data()    Line:514 

ReadMetaData(meta, data, offset3, offset1); 将data中的数据按顺序读入到meta中,类似于genLMDB.py生成的output.txt数据格式


TransformMetaJoints

  TransformMetaJoints(meta);

17个关节点变为18个


JSON_17num_parts.png
void CPMDataTransformer<Dtype>::TransformJoints(Joints& j) {
  //transform joints in meta from np_in_lmdb (specified in prototxt) to np (specified in prototxt)
  Joints jo = j;

  if(np == 56){
    int COCO_to_ours_1[18] = {1,6, 7,9,11, 6,8,10, 13,15,17, 12,14,16, 3,2,5,4};  //17个关节点变为18个
    int COCO_to_ours_2[18] = {1,7, 7,9,11, 6,8,10, 13,15,17, 12,14,16, 3,2,5,4};
    jo.joints.resize(np);
    jo.isVisible.resize(np);
    for(int i=0;i<18;i++){
      jo.joints[i] = (j.joints[COCO_to_ours_1[i]-1] + j.joints[COCO_to_ours_2[i]-1]) * 0.5;
      if(j.isVisible[COCO_to_ours_1[i]-1]==2 || j.isVisible[COCO_to_ours_2[i]-1]==2){
        jo.isVisible[i] = 2;
      }
      else if(j.isVisible[COCO_to_ours_1[i]-1]==3 || j.isVisible[COCO_to_ours_2[i]-1]==3){
        jo.isVisible[i] = 3;
      }
      else {
        jo.isVisible[i] = j.isVisible[COCO_to_ours_1[i]-1] && j.isVisible[COCO_to_ours_2[i]-1];
      }
    }
  }


generateLabelMap

  generateLabelMap(transformed_label, img_aug, meta);
void CPMDataTransformer<Dtype>::generateLabelMap(Dtype* transformed_label, Mat& img_aug, MetaData meta)

放置高斯响应,放置高斯响应函数比较简单(至于transformed_label为什么要从[(np+1) * channelOffset + g_y * grid_x + g_x]开始,是因为在generateLabelMap函数之前,被mask_miss和一个background占了

if (mode > 4){
    for (int g_y = 0; g_y < grid_y; g_y++){
      for (int g_x = 0; g_x < grid_x; g_x++){
        for (int i = 0; i < np; i++){
          float weight = float(mask_miss_aug.at<uchar>(g_y, g_x)) /255; //mask_miss_aug.at<uchar>(i, j); 
          if (meta.joint_self.isVisible[i] != 3){
            transformed_labeld[i*channelOffset + g_y*grid_x + g_x] = weight;
          }
        }  
        // background channel
        if(mode == 5){
          transformed_label[np*channelOffset + g_y*grid_x + g_x] = float(mask_miss_aug.at<uchar>(g_y, g_x)) /255;
        }
        if(mode > 5){
          transformed_label[np*channelOffset + g_y*grid_x + g_x] = 1;
          transformed_label[(2*np+1)*channelOffset + g_y*grid_x + g_x] = float(mask_all_aug.at<uchar>(g_y, g_x)) /255;
        }
      }
    }
  }
  for (int g_y = 0; g_y < grid_y; g_y++){
    for (int g_x = 0; g_x < grid_x; g_x++){
      for (int i = np+1; i < 2*(np+1); i++){
        if (mode == 6 && i == (2*np + 1))
          continue;
        transformed_label[i*channelOffset + g_y*grid_x + g_x] = 0;
      }
    }
  }
  if (np == 56){
    for (int i = 0; i < 18; i++){
      Point2f center = meta.joint_self.joints[i];
      if(meta.joint_self.isVisible[i] <= 1){
        putGaussianMaps(transformed_label + (i+np+39)*channelOffset, center, param_.stride(), 
                        grid_x, grid_y, param_.sigma()); //self 放置关节点高斯响应
      }
      for(int j = 0; j < meta.numOtherPeople; j++){ //for every other person
        Point2f center = meta.joint_others[j].joints[i];
        if(meta.joint_others[j].isVisible[i] <= 1){
          putGaussianMaps(transformed_label + (i+np+39)*channelOffset, center, param_.stride(), 
                          grid_x, grid_y, param_.sigma());
        }
      }
    }

2×19(PAF)的数组排序

    int mid_1[19] = {2, 9,  10, 2,  12, 13, 2, 3, 4, 3,  2, 6, 7, 6,  2, 1,  1,  15, 16};
    int mid_2[19] = {9, 10, 11, 12, 13, 14, 3, 4, 5, 17, 6, 7, 8, 18, 1, 15, 16, 17, 18};
    int thre = 1;

    for(int i=0;i<19;i++){   // 2×19=38 2×PAF
      Mat count = Mat::zeros(grid_y, grid_x, CV_8UC1);
      Joints jo = meta.joint_self;
      if(jo.isVisible[mid_1[i]-1]<=1 && jo.isVisible[mid_2[i]-1]<=1){
        //putVecPeaks
        putVecMaps(transformed_label + (np+ 1+ 2*i)*channelOffset, transformed_label + (np+ 2+ 2*i)*channelOffset, 
                  count, jo.joints[mid_1[i]-1], jo.joints[mid_2[i]-1], param_.stride(), grid_x, grid_y, param_.sigma(), thre); //self
      } //与COCO对应

      for(int j = 0; j < meta.numOtherPeople; j++){ //for every other person
        Joints jo2 = meta.joint_others[j];
        if(jo2.isVisible[mid_1[i]-1]<=1 && jo2.isVisible[mid_2[i]-1]<=1){
          //putVecPeaks
          putVecMaps(transformed_label + (np+ 1+ 2*i)*channelOffset, transformed_label + (np+ 2+ 2*i)*channelOffset, 
                  count, jo2.joints[mid_1[i]-1], jo2.joints[mid_2[i]-1], param_.stride(), grid_x, grid_y, param_.sigma(), thre); //self
        }
      }
    }

putVecMaps函数用于设置PAF的labels,count初始值为0

Mat count = Mat::zeros(grid_y, grid_x, CV_8UC1);
void CPMDataTransformer<Dtype>::putVecMaps(Dtype* entryX, Dtype* entryY, Mat& count, Point2f centerA, Point2f centerB, int stride, int grid_x, int grid_y, float sigma, int thre)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,348评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,122评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 156,936评论 0 347
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,427评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,467评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,785评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,931评论 3 406
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,696评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,141评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,483评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,625评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,291评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,892评论 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,741评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,977评论 1 265
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,324评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,492评论 2 348

推荐阅读更多精彩内容