Mac上跑BERT预训练模型(Google Sample)

安装环境

!pip install tensorflow==2.0 -i https://pypi.tuna.tsinghua.edu.cn/simple/
!pip install tensorflow_hub -i https://pypi.tuna.tsinghua.edu.cn/simple/
!pip install bert-for-tf2 -i https://pypi.tuna.tsinghua.edu.cn/simple/

代码

from sklearn.model_selection import train_test_split
import math
import pandas as pd
import tensorflow as tf
import tensorflow_hub as hub
from datetime import datetime
from bert.tokenization.bert_tokenization import FullTokenizer
from tensorflow.keras.models import Model

这里下载BERT预训练模型到目标目录
下载地址:https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1

max_seq_length = 128  # Your choice here.
input_word_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32,
                                       name="input_word_ids")
input_mask = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32,
                                   name="input_mask")
segment_ids = tf.keras.layers.Input(shape=(max_seq_length,), dtype=tf.int32,
                                    name="segment_ids")
bert_layer = hub.KerasLayer("/你的目录/bert_en_uncased_L-12_H-768_A-12_1",
                            trainable=True)
pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids])
model = Model(inputs=[input_word_ids, input_mask, segment_ids], outputs=[pooled_output, sequence_output])

def get_masks(tokens, max_seq_length):
    """Mask for padding"""
    if len(tokens)>max_seq_length:
        raise IndexError("Token length more than max seq length!")
    return [1]*len(tokens) + [0] * (max_seq_length - len(tokens))

def get_segments(tokens, max_seq_length):
    """Segments: 0 for the first sequence, 1 for the second"""
    if len(tokens)>max_seq_length:
        raise IndexError("Token length more than max seq length!")
    segments = []
    current_segment_id = 0
    for token in tokens:
        segments.append(current_segment_id)
        if token == "[SEP]":
            current_segment_id = 1
    return segments + [0] * (max_seq_length - len(tokens))

def get_ids(tokens, tokenizer, max_seq_length):
    """Token ids from Tokenizer vocab"""
    token_ids = tokenizer.convert_tokens_to_ids(tokens)
    input_ids = token_ids + [0] * (max_seq_length-len(token_ids))
    return input_ids

vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = FullTokenizer(vocab_file, do_lower_case)

s = "This is a nice sentence."
stokens = tokenizer.tokenize(s)
stokens = ["[CLS]"] + stokens + ["[SEP]"]

input_ids = get_ids(stokens, tokenizer, max_seq_length)
input_masks = get_masks(stokens, max_seq_length)
input_segments = get_segments(stokens, max_seq_length)

pool_embs, all_embs = model.predict([[input_ids],[input_masks],[input_segments]])

def square_rooted(x):
    return math.sqrt(sum([a*a for a in x]))


def cosine_similarity(x,y):
    numerator = sum(a*b for a,b in zip(x,y))
    denominator = square_rooted(x)*square_rooted(y)
    return numerator/float(denominator)

cosine_similarity(pool_embs[0], all_embs[0][0])

结果:0.02757265801760349

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,270评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,489评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,630评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,906评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,928评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,718评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,442评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,345评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,802评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,984评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,117评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,810评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,462评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,011评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,139评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,377评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,060评论 2 355

推荐阅读更多精彩内容