原文地址:https://finthon.com/learn-cnn-two-tfrecord-read-data/
-- 全文阅读5分钟 --
在本文中,你将学习到以下内容:
- 将图片数据制作成tfrecord格式
- 将tfrecord格式数据还原成图片
前言
tfrecord是TensorFlow官方推荐的标准格式,能够将图片数据和标签一起存储成二进制文件,在TensorFlow中实现快速地复制、移动、读取和存储操作。训练网络的时候,通过建立队列系统,可以预先将tfrecord格式的数据加载进队列,队列会自动实现数据随机或有序地进出栈,并且队列系统和模型训练是独立进行的,这就加速了我们模型的读取和训练。
准备图片数据
按照图片预处理教程,我们获得了两组resize成224*224大小的商标图片集,把标签分别命名成1和2两类,如下图:
我们现在就将这两个类别的图片集制作成tfrecord格式。
制作tfrecord格式
导入必要的库:
import os
from PIL import Image
import tensorflow as tf
定义一些路径和参数:
# 图片路径,两组标签都在该目录下
cwd = r"./brand_picture/"
# tfrecord文件保存路径
file_path = r"./"
# 每个tfrecord存放图片个数
bestnum = 1000
# 第几个图片
num = 0
# 第几个TFRecord文件
recordfilenum = 0
# 将labels放入到classes中
classes = []
for i in os.listdir(cwd):
classes.append(i)
# tfrecords格式文件名
ftrecordfilename = ("traindata_63.tfrecords-%.3d" % recordfilenum)
writer = tf.python_io.TFRecordWriter(os.path.join(file_path, ftrecordfilename))
bestnum控制每个tfrecord的大小,这里使用1000,首先定义tf.python_io.TFRecordWriter,方便后面写入存储数据。
制作tfrecord格式时,实际上是将图片和标签一起存储在tf.train.Example中,它包含了一个字典,键是一个字符串,值的类型可以是BytesList,FloatList和Int64List。
for index, name in enumerate(classes):
class_path = os.path.join(cwd, name)
for img_name in os.listdir(class_path):
num = num + 1
if num > bestnum: #超过1000,写入下一个tfrecord
num = 1
recordfilenum += 1
ftrecordfilename = ("traindata_63.tfrecords-%.3d" % recordfilenum)
writer = tf.python_io.TFRecordWriter(os.path.join(file_path, ftrecordfilename))
img_path = os.path.join(class_path, img_name) # 每一个图片的地址
img = Image.open(img_path, 'r')
img_raw = img.tobytes() # 将图片转化为二进制格式
example = tf.train.Example(
features=tf.train.Features(feature={
'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw])),
}))
writer.write(example.SerializeToString()) # 序列化为字符串
writer.close()
在这里我们保存的label是classes中的编号索引,即0和1,你也可以改成文件名作为label,但是一定是int类型。图片读取以后转化成了二进制格式。最后通过writer写入数据到tfrecord中。
最终我们在当前目录下生成一个tfrecord文件:
读取tfrecord文件
读取tfrecord文件是存储的逆操作,我们定义一个读取tfrecord的函数,方便后面调用。
import tensorflow as tf
def read_and_decode_tfrecord(filename):
filename_deque = tf.train.string_input_producer(filename)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_deque)
features = tf.parse_single_example(serialized_example, features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw': tf.FixedLenFeature([], tf.string)})
label = tf.cast(features['label'], tf.int32)
img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [224, 224, 3])
img = tf.cast(img, tf.float32) / 255.0
return img, label
train_list = ['traindata_63.tfrecords-000']
img, label = read_and_decode_tfrecord(train_list)
这段代码主要是通过tf.TFRecordReader读取里面的数据,并且还原数据类型,最后我们对图片矩阵进行归一化。到这里我们就完成了tfrecord输出,可以对接后面的训练网络了。
如果我们想直接还原成原来的图片,就需要先注释掉读取tfrecord函数中的归一化一行,并添加部分代码,完整代码如下:
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
def read_and_decode_tfrecord(filename):
filename_deque = tf.train.string_input_producer(filename)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_deque)
features = tf.parse_single_example(serialized_example, features={
'label': tf.FixedLenFeature([], tf.int64),
'img_raw': tf.FixedLenFeature([], tf.string)})
label = tf.cast(features['label'], tf.int32)
img = tf.decode_raw(features['img_raw'], tf.uint8)
img = tf.reshape(img, [224, 224, 3])
# img = tf.cast(img, tf.float32) / 255.0 #将矩阵归一化0-1之间
return img, label
train_list = ['traindata_63.tfrecords-000']
img, label = read_and_decode_tfrecord(train_list)
img_batch, label_batch = tf.train.batch([img, label], num_threads=2, batch_size=2, capacity=1000)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# 创建一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner,此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
while True:
b_image, b_label = sess.run([img_batch, label_batch])
b_image = Image.fromarray(b_image[0])
plt.imshow(b_image)
plt.axis('off')
plt.show()
coord.request_stop()
# 其他所有线程关闭之后,这一函数才能返回
coord.join(threads)
在后面建立了一个队列tf.train.batch,通过Session调用顺序队列系统,输出每张图片。Session部分在训练网络的时候还会讲到。我们学习tfrecord过程,能加深对数据结构和类型的理解。到这里我们对tfrecord格式的输入输出有了一定了解,我们训练网络的准备工作已完成,接下来就是我们CNN模型的搭建工作了。
可能感兴趣
"笨方法"学习CNN图像识别(一)—— 图片预处理
"笨方法"学习CNN图像识别(二)—— tfrecord格式高效读取数据
"笨方法"学习CNN图像识别(三)—— ResNet网络训练及预测
使用Python+Tensorflow的CNN技术快速识别验证码