笔记说明
tidyr包是一个用于整理数据结构的r包,也是tidyverse
的核心包之一。
本次笔记介绍tidy data、长数据、宽数据的相关概念以及用于长数据、宽数据相互转换的函数。
推荐阅读:
关于tidyr包:https://tidyr.tidyverse.org/
关于tidy data: https://tidyr.tidyverse.org/articles/tidy-data.html
tidy data论文:https://vita.had.co.nz/papers/tidy-data.html
关于长宽数据转换操作:https://tidyr.tidyverse.org/articles/pivot.html
长数据、宽数据
同样的数据内容可以以不同的数据结构呈现在数据集中。
我们用tidyr包自带的示例数据集table4a来说明。
数据集table4a中的数据为三个国家1999和2000年的结核病例数
# 加载包
library(tidyr)
library(dplyr)
table4a
table4a
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
为方便演示说明,我们新添一列2001年的数据(杜撰):
table_wide <- table4a %>%
mutate(`2001` = `1999` + `2000`)
## # A tibble: 3 x 4
## country `1999` `2000` `2001`
## <chr> <int> <int> <int>
## 1 Afghanistan 745 2666 3411
## 2 Brazil 37737 80488 118225
## 3 China 212258 213766 426024
同样的数据内容,还可以按下面的数据结构来组成数据集table_long:
## # A tibble: 9 x 3
## country year case
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Afghanistan 2001 3411
## 4 Brazil 1999 37737
## 5 Brazil 2000 80488
## 6 Brazil 2001 118225
## 7 China 1999 212258
## 8 China 2000 213766
## 9 China 2001 426024
- 像
table_wide
这样,(同样数据内容下)变量多观测少,通过ID(区分不同研究对象的变量,这里即为country变量)值和变量名来定位数据值的数据结构称为宽数据(wide format) - 像
table_long
这样,(同样数据内容下)变量少观测多,通过ID值和类别变量(这里即为year变量)值来定位数据值的数据结构为长数据(long format)
有些数据分析方法需要数据为宽数据,而有些数据分析方法则要求数据为长数据。因此对数据结构进行变换也是统计分析的基本功。另外,长数据一般来说更方便进行数据录入以及数据比较。
tidy data和messy data
tidy data是Hadley Wickham提出的一种结构化的数据集形式,它要求数据集满足下列条件:
- Each variable forms a column. 每个变量形成一列
- Each observation forms a row. 每个观测形成一行
- Each type of observational unit forms a table. 每种类型的观测的单元形成一张表
所有不满足tidy data条件的数据集都是messy data。所谓tidy data全都相似,而messy data各有不同。违背tidy data条件的最常见的几种情形:
- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.
第一种情形:Column headers are values, not variable names.列名是变量值而不是变量名。需要对数据进行宽数据向长数据的转换以变为tidy data。以刚才展示的table_wide和table_long为例,table_long符合tidy data的要求,而table_wide就是messy data,因为它的列名1999
2000
2001
应该视为变量值而非变量名。
实际中区分列名是变量值还是变量名有时候是比较模糊的。可以结合不同列是否横向可加来判断,如果横向可加则考虑列名是变量值。
第二种情形:Multiple variables are stored in one column.多个变量存储于同一列。需要对数据进行长数据向宽数据的转换以变为tidy data。例如:
## # A tibble: 4 x 3
## id variable vlaue
## <dbl> <chr> <dbl>
## 1 1 身高 170
## 2 1 体重 65
## 3 2 身高 178
## 4 2 体重 73
该数据中value列其实包含了身高、体重两个变量的值。判断一列内是否存在多个变量,可以结合该列是否纵向可加来判断,如果不可加则考虑存在多个变量。
用pivot_longer()将宽数据转为长数据
pivot_longer()
使宽数据转换为长数据。其简要用法为:
pivot_longer(data, cols, names_to = "name", values_to = "value")
-
data
即为需要进行数据结构转化的数据集 -
col
指定进行转化的列,在select()
函数中可以帮助指定列的"select helper"在这里也适用,可以使用负号“-”表示反向选择。 -
names_to
:col
指定的那些列的列名会组成一个新的变量,names_to
指定该新变量的变量名 -
values_to
:col
指定的那些列的变量值会组成一个新的变量,values_to
指定该新变量的变量名
举例:把table_wide转变为table_long:
## # A tibble: 3 x 4
## country `1999` `2000` `2001`
## <chr> <int> <int> <int>
## 1 Afghanistan 745 2666 3411
## 2 Brazil 37737 80488 118225
## 3 China 212258 213766 426024
table_long <- table_wide %>%
pivot_longer(cols = -country, names_to = "year", values_to = "case")
## # A tibble: 9 x 3
## country year case
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Afghanistan 2000 2666
## 3 Afghanistan 2001 3411
## 4 Brazil 1999 37737
## 5 Brazil 2000 80488
## 6 Brazil 2001 118225
## 7 China 1999 212258
## 8 China 2000 213766
## 9 China 2001 426024
pivot_longer()与gather()
pivot_longer()
函数是之前的版本中gather()
函数的改良。虽然新版本仍然保留了gather()
函数,但建议写新代码时使用pivot_longer()
而不是gather()
对于使用过gather()
的用户,以下两条代码是等价的。
df %>% gather("key", "value", x, y, z)
df %>% pivot_longer(c(x, y, z), names_to = "key", values_to = "value")
用pivot_wider()将长数据转为宽数据
pivot_wider()
使长数据转换为宽数据。其简要用法为:
pivot_wider(data, id_cols = NULL, names_from = name,values_from = value,)
-
data
即为需要进行数据结构转化的数据集 -
id_cols
指定用什么变量来识别不同观测。不指定时默认用除names_from
和values_from
所指定变量之外的所有变量来识别不同观测。 -
names_from
指定新数据集中展开的各新变量的变量名由旧数据集的哪个(或哪些)变量得到 -
values_from
指定新数据集中展开的各新变量的变量值由旧数据的哪个(或哪些)得到。如果指定了多个值,则会求和得到新变量值。
举例:将table_long变回宽数据:
table_long %>% pivot_wider(id_cols = country, names_from = year, values_from = case)
(实际上id_cols可以不写,我个人习惯写一下)
## # A tibble: 3 x 4
## country `1999` `2000` `2001`
## <chr> <int> <int> <int>
## 1 Afghanistan 745 2666 3411
## 2 Brazil 37737 80488 118225
## 3 China 212258 213766 426024
pivot_wider()与spread()
pivot_wider()
函数是之前的版本中spread()
函数的改良。虽然新版本仍然保留了spread()
函数,但建议写新代码时使用pivot_wider()
而不是spread()
对于使用过spread()
的用户,以下两条代码是等价的。
df %>% spread(key, value)
df %>% pivot_wider(names_from = key, values_from = value)