TCGA和GTEx的数据联合分析实战

0.缘起

很多文章中用到GEPIA这个网页工具来进行TCGA和GTEx表达量的联合比较,但在此之前我不知道要怎样在R语言中实现。​这个GEPIA的文章里说:

The imbalance between the tumor and normal data can cause inefficiency in various differential analyses. Fortunately, the GTEx project produced RNA-Seq data for over 8000 normal samples, albeit from unrelated donors. Such data cannot be directly combined for integrated analysis due to many differences in aspects like data processing pipelines and gene models. To make data from different sources more compatible, the UCSC Xena project (http://xena.ucsc.edu/) has recomputed all expression raw data based on a standard pipeline to** minimize differences from distinct sources**, thus allowing for the formation of the most comprehensive expression data up to date.

xena上面可以看到,TCGA和GTex、Target数据库的测序数据已经被重新计算整合到了一起,提供了各种格式的文件。


这里上游分析使用的是RSEM,而不是featurecout,导致得到的数据并不是标准的count值,是非整数。

1.RSEM 对应的差异分析包是EBSeq

RSEM (RNA-Seq by Expectation-Maximization)

关于它的下游分析,官网建议使用的R包是EBSeq:
EBSeq:http://www.bioconductor.org/packages/devel/bioc/html/EBSeq.html

但市面上公认最好的差异分析R包是DESeq2,limma,edgeR。有没有办法将RSEM的counts矩阵交给三大R包来处理呢?

2.能不能用limma和edgeR

这个问题刚好是关于TCGA的RSEM数据,
https://support.bioconductor.org/p/63981/#64004
limma的作者亲自回答了:

The RSEM expected counts from the TCGA project will work fine with either limma-voom or edgeR. However, with such a large number of samples, limma-voom is easily the best choice from a computational point of view.

limma-voom是更好的选择。
关于expected_count和norm_count在这里也有讨论,即edgeR只能用expected,vomm理论上可以使用norm_count(只是可以不是必须)。

3.能不能用Deseq2

https://support.bioconductor.org/p/94003/#94028

作者说最好的办法是用tximport进行转换,其次就是四舍五入对矩阵进行取整,然后用 DESeqDataSetFromMatrix去导入即可。

4.tximport是Deseq2作者写的R包

tximport:将各种上游分析软件得到的数据转换给三大R包使用。
其中讲了如何将ERR格式的数据导入R,并生成矩阵。DESeq2 和edgeR除了需要count矩阵,还需要一个length矩阵,而limma则是需要经过一步 "scaledTPM" 或"lengthScaledTPM"转换,需要另外一个矩阵来做校正。在xena中的数据我们只能拿到一个count矩阵,因此这个暂时用不上,但不妨碍它是个好东西。

5.胰腺癌的RSEM数据TCGA+GTEx联合分析

用三大R包差异分析分别做出的火山图和热图:

他们的结果取交集:


这个代码我已经上传到了github,https://github.com/xjsun1221/RSEM_with_limma_edgeR_Deseq2
。因为是根据作者的回复自己摸索的,受目前水平影响不能保证完全正确,以后也可能会进行修改,不建议作为标准答案来学习,供参考,如果发现有问题请发邮件到xjsun1221@163.com来反馈,提前感谢啦!我将在简书中更新。
另外github上有另外两人贡献的代码:
RSEM对接limma:https://github.com/NabilaRahman/RNA-Seq-Pipeline
RSEM对接DESeq2:https://github.com/yh154/rnaseq-rsem-star-deseq2-gsea

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354