六.Spark SQL使用数据源

1、通用的Load/Save函数

(*)什么是parquet文件?

Parquet是列式存储格式的一种文件类型,列式存储有以下的核心:

可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量。

压缩编码可以降低磁盘存储空间。由于同一列的数据类型是一样的,可以使用更高效的压缩编码(例如Run Length Encoding和Delta Encoding)进一步节约存储空间。

只读取需要的列,支持向量运算,能够获取更好的扫描性能。

Parquet格式是Spark SQL的默认数据源,可通过spark.sql.sources.default配置

()通用的Load/Save函数

读取Parquet文件

val usersDF = spark.read.load("/root/resources/users.parquet")

查询Schema和数据

查询用户的name和喜爱颜色,并保存

usersDF.select($"name",$"favorite_color").write.save("/root/result/parquet")

验证结果

(*)显式指定文件格式:加载json格式

直接加载:

val usersDF = spark.read.load("/root/resources/people.json")

会出错

val usersDF = spark.read.format("json").load("/root/resources/people.json")

(*)存储模式(Save Modes)

可以采用SaveMode执行存储操作,SaveMode定义了对数据的处理模式。需要注意的是,这些保存模式不使用任何锁定,不是原子操作。此外,当使用Overwrite方式执行时,在输出新数据之前原数据就已经被删除。SaveMode详细介绍如下表:

Demo:

usersDF.select($"name").write.save("/root/result/parquet1")

--> 出错:因为/root/result/parquet1已经存在

usersDF.select($"name").write.mode("overwrite").save("/root/result/parquet1")

(*)将结果保存为表

usersDF.select($"name").write.saveAsTable("table1")

也可以进行分区、分桶等操作:partitionBy、bucketBy

2、Parquet文件

Parquet是一个列格式而且用于多个数据处理系统中。Spark SQL提供支持对于Parquet文件的读写,也就是自动保存原始数据的schema。当写Parquet文件时,所有的列被自动转化为nullable,因为兼容性的缘故。

(*)案例:

读入json格式的数据,将其转换成parquet格式,并创建相应的表来使用SQL进行查询。

(*)Schema的合并:

Parquet支持Schema evolution(Schema演变,即:合并)。用户可以先定义一个简单的Schema,然后逐渐的向Schema中增加列描述。通过这种方式,用户可以获取多个有不同Schema但相互兼容的Parquet文件。

Demo:

3、JSON Datasets

Spark SQL能自动解析JSON数据集的Schema,读取JSON数据集为DataFrame格式。读取JSON数据集方法为SQLContext.read().json()。该方法将String格式的RDD或JSON文件转换为DataFrame。需要注意的是,这里的JSON文件不是常规的JSON格式。JSON文件每一行必须包含一个独立的、自满足有效的JSON对象。如果用多行描述一个JSON对象,会导致读取出错。读取JSON数据集示例如下:

(*)Demo1:使用Spark自带的示例文件 --> people.json文件

定义路径:

val path ="/root/resources/people.json"

读取Json文件,生成DataFrame:

val peopleDF = spark.read.json(path)

打印Schema结构信息:

peopleDF.printSchema()

创建临时视图:

peopleDF.createOrReplaceTempView("people")

执行查询

spark.sql("SELECT name FROM people WHERE age=19").show

4、使用JDBC

Spark SQL同样支持通过JDBC读取其他数据库的数据作为数据源。

Demo演示:使用Spark SQL读取Oracle数据库中的表。

启动Spark Shell的时候,指定Oracle数据库的驱动

spark-shell --master spark://spark81:7077 \\

--jars /root/temp/ojdbc6.jar \\

--driver-class-path /root/temp/ojdbc6.jar

读取Oracle 数据库中的数据

(*)方式一:

val oracleDF = spark.read.format("jdbc").

option("url","jdbc:oracle:thin:@192.168.88.101:1521/orcl.example.com").

option("dbtable","scott.emp").

option("user","scott").

option("password","tiger").

load

(*)方式二:

导入需要的类:

import java.util.Properties

定义属性:

val oracleprops = new Properties()

oracleprops.setProperty("user","scott")

oracleprops.setProperty("password","tiger")

读取数据:

val oracleEmpDF =

spark.read.jdbc("jdbc:oracle:thin:@192.168.88.101:1521/orcl.example.com",

"scott.emp",oracleprops)

注意:下面是读取Oracle 10g(Windows上)的步骤

5、使用Hive Table

首先,搭建好Hive的环境(需要Hadoop)

配置Spark SQL支持Hive

只需要将以下文件拷贝到$SPARK_HOME/conf的目录下,即可

$HIVE_HOME/conf/hive-site.xml

$HADOOP_CONF_DIR/core-site.xml

$HADOOP_CONF_DIR/hdfs-site.xml

使用Spark Shell操作Hive

启动Spark Shell的时候,需要使用--jars指定mysql的驱动程序

创建表

spark.sql("create table src (key INT, value STRING) row format delimited

fields terminated by ','")

导入数据

spark.sql("load data local path '/root/temp/data.txt' into table src")

查询数据

spark.sql("select * from src").show

使用spark-sql操作Hive

启动spark-sql的时候,需要使用--jars指定mysql的驱动程序

操作Hive

show tables;

select * from 表;

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,122评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,070评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,491评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,636评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,676评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,541评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,292评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,211评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,655评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,846评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,965评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,684评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,295评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,894评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,012评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,126评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,914评论 2 355

推荐阅读更多精彩内容