决策树的python实现


本文结构:

  1. 是什么?
  2. 有什么算法?
  3. 数学原理?
  4. 编码实现算法?

1. 是什么?

简单地理解,就是根据一些 feature 进行分类,每个节点提一个问题,通过判断,将数据分为几类,再继续提问。这些问题是根据已有数据学习出来的,再投入新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶子上。


2. 有什么算法?

常用的几种决策树算法有ID3、C4.5、CART:

ID3:选择信息熵增益最大的feature作为node,实现对数据的归纳分类。
C4.5:是ID3的一个改进,比ID3准确率高且快,可以处理连续值和有缺失值的feature。
CART:使用基尼指数的划分准则,通过在每个步骤最大限度降低不纯洁度,CART能够处理孤立点以及能够对空缺值进行处理。


3. 数学原理?

ID3: Iterative Dichotomiser 3

参考

下面这个数据集,可以同时被上面两颗树表示,结果是一样的,而我们更倾向于选择简单的树。
那么怎样做才能使得学习到的树是最简单的呢?

下面是 ID3( Iterative Dichotomiser 3 )的算法:

例如下面数据集,哪个是最好的 Attribute?


用熵Entropy来衡量:
E(S) 是数据集S的熵
i 指每个结果,即 No,Yes的概率

E越大意味着信息越混乱,我们的目标是要让E最小。
E在0-1之间,如果P+的概率在0.5, 此时E最大,这时候说明信息对我们没有明确的意义,对分类没有帮助。

但是我们不仅仅想要变量的E最小,还想要这棵树是 well organized。
所以用到 Gain:信息增益

意思是如果我后面要用这个变量的话,它的E会减少多少。

例如下面的数据集:

  1. 先计算四个feature的熵E,及其分支的熵,然后用Gain的公式计算信息增益。


  2. 再选择Gain最大的特征是 outlook。

  3. 第一层选择出来后,各个分支再继续选择下一层,计算Gain最大的,例如分支 sunny 的下一层节点是 humidity。


详细的计算步骤可以参考这篇博文。


C4.5

参考

ID3有个局限是对于有大量数据的feature过于敏感,C4.5是它的一个改进,通过选择最大的信息增益率 gain ratio 来选择节点。而且它可以处理连续的和有缺失值的数据。

P’ (j/p) is the proportion of elements present at the position p, taking the value of j-th test.

例如 outlook 作为第一层节点后,它有 3 个分支,分别有 5,4,5 条数据,则 SplitInfo(5,4,5) = -5/14log(5,14)-4/14log(4,14)-5/14(5,14) ,其中 log(5,14) 即为 log2(5/14)。

下面是一个有连续值和缺失值的例子:

连续值

第一步计算 Gain,除了连续值的 humudity,其他步骤和前文一样。

要计算 humudity 的 Gain 的话,先把所有值升序排列:
{65, 70, 70, 70, 75, 78, 80, 80, 80, 85, 90, 90, 95, 96}
然后把重复的去掉:
{65, 70, 75, 78, 80, 85, 90, 95, 96}
如下图所示,按区间计算 Gain,然后选择最大的 Gain (S, Humidity) = 0.102

因为 Gain(S, Outlook) = 0 .246,所以root还是outlook:

缺失值

处理有缺失值的数据时候,用下图的公式:

例如 D12 是不知道的。

  1. 计算全集和 outlook 的 info,


  2. 其中几个分支的熵如下,再计算出 outlook 的 Gain:


比较一下 ID3 和 C4.5 的准确率和时间:

accuracy :


execution time:



4. 编码实现算法?

代码可以看《机器学习实战》这本书和这篇博客。

完整代码可以在 github 上查看。

接下来以 C4.5 的代码为例:

** 1. 定义数据:**

def createDataSet():
    dataSet = [[0, 0, 0, 0, 'N'], 
               [0, 0, 0, 1, 'N'], 
               [1, 0, 0, 0, 'Y'], 
               [2, 1, 0, 0, 'Y'], 
               [2, 2, 1, 0, 'Y'], 
               [2, 2, 1, 1, 'N'], 
               [1, 2, 1, 1, 'Y']]
    labels = ['outlook', 'temperature', 'humidity', 'windy']
    return dataSet, labels

** 2. 计算熵:**

def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1      # 数每一类各多少个, {'Y': 4, 'N': 3}
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt

** 3. 选择最大的gain ratio对应的feature:**

def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1                 #feature个数
    baseEntropy = calcShannonEnt(dataSet)             #整个dataset的熵
    bestInfoGainRatio = 0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i] for example in dataSet]  #每个feature的list
        uniqueVals = set(featList)                      #每个list的唯一值集合                 
        newEntropy = 0.0
        splitInfo = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)  #每个唯一值对应的剩余feature的组成子集
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
            splitInfo += -prob * log(prob, 2)
        infoGain = baseEntropy - newEntropy              #这个feature的infoGain
        if (splitInfo == 0): # fix the overflow bug
            continue
        infoGainRatio = infoGain / splitInfo             #这个feature的infoGainRatio      
        if (infoGainRatio > bestInfoGainRatio):          #选择最大的gain ratio
            bestInfoGainRatio = infoGainRatio
            bestFeature = i                              #选择最大的gain ratio对应的feature
    return bestFeature

** 4. 划分数据,为下一层计算准备: **

def splitDataSet(dataSet, axis, value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:                      #只看当第i列的值=value时的item
            reduceFeatVec = featVec[:axis]              #featVec的第i列给除去
            reduceFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reduceFeatVec)            
    return retDataSet

** 5. 多重字典构建树:**

def createTree(dataSet, labels):
    classList = [example[-1] for example in dataSet]         # ['N', 'N', 'Y', 'Y', 'Y', 'N', 'Y']
    if classList.count(classList[0]) == len(classList):
        # classList所有元素都相等,即类别完全相同,停止划分
        return classList[0]                                  #splitDataSet(dataSet, 0, 0)此时全是N,返回N
    if len(dataSet[0]) == 1:                                 #[0, 0, 0, 0, 'N'] 
        # 遍历完所有特征时返回出现次数最多的
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)             #0-> 2   
        # 选择最大的gain ratio对应的feature
    bestFeatLabel = labels[bestFeat]                         #outlook -> windy     
    myTree = {bestFeatLabel:{}}                   
        #多重字典构建树{'outlook': {0: 'N'
    del(labels[bestFeat])                                    #['temperature', 'humidity', 'windy'] -> ['temperature', 'humidity']        
    featValues = [example[bestFeat] for example in dataSet]  #[0, 0, 1, 2, 2, 2, 1]     
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]                                #['temperature', 'humidity', 'windy']
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
            # 划分数据,为下一层计算准备
    return myTree

** 6. 可视化决策树的结果: **

dataSet, labels = createDataSet()
labels_tmp = labels[:]
desicionTree = createTree(dataSet, labels_tmp)
treePlotter.createPlot(desicionTree)

历史技术博文链接汇总

我是 不会停的蜗牛 Alice
85后全职主妇
喜欢人工智能,行动派
创造力,思考力,学习力提升修炼进行中
欢迎您的喜欢,关注和评论!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,423评论 6 491
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,147评论 2 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,019评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,443评论 1 283
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,535评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,798评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,941评论 3 407
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,704评论 0 266
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,152评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,494评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,629评论 1 340
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,295评论 4 329
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,901评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,742评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,978评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,333评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,499评论 2 348

推荐阅读更多精彩内容